The Hamilton Spectator

Ultrasound could revolution­ize treatment

- SHERYL UBELACKER

TORONTO — Karen Hellerman sits patiently in her hospital gown as Dr. Nir Lipsman gently shaves her head. The neurosurge­on then injects freezing into her newly shorn scalp before fitting her head with a circular frame, snugging the helmetlike device with screws so it can’t shift during the upcoming procedure.

The former elementary school teacher and principal from Chatham, Ont., has early-onset Alzheimer’s and she has volunteere­d to take part in a bold new experiment­al procedure at Sunnybrook Health Sciences Centre in Toronto — one which doctors there hope may some day revolution­ize the treatment of dementia and other debilitati­ng neurologic­al disorders.

Hellerman is then taken into the MRI suite, where for the next few hours she lies sedated in the huge, noisy scanner as her brain is imaged and low-intensity ultrasound waves are passed through her skull, targeting the right frontal lobe of her brain.

The goal is to poke microscopi­c holes in the blood-brain barrier, a fine membrane that keeps “bad things out of the brain,” including disease-causing microbes, Lipsman explains. “But it also keeps potentiall­y good things out of the brain as well, including medical treatments for very common brainbased disorders, of which Alzheimer’s is a good example,” he says.

“So what we have, therefore, potentiall­y, are medical treatments that may work ... but just cannot get into the brain in sufficient concentrat­ions to have a good effect.”

Being able to breach the barrier should allow drugs to pass more easily into the brain, where they could deliver a much stronger therapeuti­c punch, he says.

The Sunnybrook team has been testing MRI-guided focused ultrasound in a small number of patients with brain tumours and more recently in those with Alzheimer’s. But Lipsman stresses these studies are strictly aimed at establishi­ng that the procedure is safe for patients — no treatment is given after the blood-brain barrier is opened, and it closes on its own in about six to eight hours.

Hellerman is the third Alzheimer’s patient to undergo the procedure and she had no hesitation about being a human guinea pig even though she knows it may not be fully developed soon enough to help her condition. It could be years before patient trials prove the technique is a safe and effective means of enhancing drug treatment to diminish the amyloid plaque and protein tangles that progressiv­ely destroy brain cells.

“I’m not doing it for me. I’m doing it for other people,” says the 63year-old mother of two grown children.

Doctors at Sunnybrook have used MRI-guided focused ultrasound to treat a condition called essential tremor, in which a person’s extremitie­s, particular­ly the arms and hands, develop uncontroll­able shaking that can prevent them from performing the simplest of tasks, from eating and drinking to writing their name. In that case, high-intensity ultrasound waves destroy a tiny area of the brain where the tremor originates.

With this procedure, the ultrasound waves have an entirely different role — they act by exciting microbubbl­es that are injected into the bloodstrea­m, causing them to vibrate and tease open minute gaps between the cells that make up the blood-brain barrier.

“The way we do that is we expose the brain to pulses of low-frequency ultrasound,” says Lipsman. “So with focused ultrasound, combined with these microbubbl­es, what we can do is open a temporary window in that blood-brain barrier, permitting potentiall­y therapeuti­c compounds access to the brain.”

Dr. Kullervo Hynynen, director of physical sciences at the Sunnybrook Research Institute, developed the idea of pairing MRI with focused ultrasound while at the University of Arizona in the early 1990s. He has worked with industry partner InSightec of Israel for more than two decades to develop the technology.

“The long-term goal is to develop a technique where we can put any kind of molecules or cells in specific locations in the brain,” Hynynen says after watching images of Hellerman’s brain on computer screens outside the MRI suite, where a team of technician­s had remotely triggered bursts of ultrasound waves through her skull.

Those molecules could include not only medication­s to slow down — or possibly even halt — the ravages of Alzheimer’s, but also chemothera­py agents for brain tumours and stem cells to repair the damage from a stroke, for instance.

“I think this technique will revolution­ize how we are going to treat brain disease and maybe even enhance brain performanc­e,” he says. “This is a very first step for us. But if all goes well — it’s a long road — eventually this will be able to help millions of patients if it’s successful and safe.”

 ?? FRANK GUNN, THE CANADIAN PRESS ?? Doctors attach headgear to early onset Alzheimer’s patient Karen Hellerman in preparatio­n for MRI-guided focused ultrasound through her skull at Sunnybrook Hospital in Toronto.
FRANK GUNN, THE CANADIAN PRESS Doctors attach headgear to early onset Alzheimer’s patient Karen Hellerman in preparatio­n for MRI-guided focused ultrasound through her skull at Sunnybrook Hospital in Toronto.

Newspapers in English

Newspapers from Canada