ACTA Scientiarum Naturalium Universitatis Pekinensis - - Contents -

[1] Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional!. Oikos, 2007, 116: 882–892 [2] Arnold S J. Morphology, performance and fitness. American Zoologist, 1983, 23: 347–361 [3] 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报, 2010, 31(1): 150–165 [4] 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态

学研究进展. 植物生态学报, 2004, 28(6): 844–852 [5] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821–827 [6] He J S, Wang Z, Wang X, et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 2006, 170(4): 835–848 [7] Grime J P, Thompson K, Hunt R et al. Integrated screening validates primary axes of specialisation in plants. Oikos, 1997, 79(2): 259–281 [8] Reich P B, Ellsworth D S, Walters M B, et al. Generality of leaf trait relationships: a test across six biomes. Ecology, 1999, 80(6): 1955–1969 [9] Díaz S, Hodgson J G, Thompson K, et al. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 2004, 15 (3): 295–304 [10] Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275–301 [11] He J S, Wang X, Flynn D F, et al. Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 2009, 90 (10): 2779–2791 [12] Cunningham S A, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soilnutrient gradients. Ecological Monographs, 1999, 69: 569–588 [13] Dormann C F, Woodin S J. Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Functional Ecology, 2002, 16 (1): 4–17 [14] 万宏伟, 杨阳, 白世勤, 等. 羊草草原群落 6 种植物叶片功能特性对氮素添加的响应. 植物生态学报, 2008, 32(3): 611–621 [15] Lienin P, Kleyer M. Plant leaf economics and reproductive investment are responsive to gradients of land use intensity. Agriculture, Ecosystems & Environment, 2011, 145(1): 67–76 [16] Garnier E, Laurent G, Bellmann A, et al. Consistency of species ranking based on functional leaf traits. New Phytologist, 2001, 152(1): 69–83 [17] Al Haj Khaled R, Duru M, Theau J P, et al. Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species. Journal of Vegetation Science, 2005, 16(4): 391–398 [18] Ordoñez J C, van Bodegom P M, Witte JP M, et al. A

global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 2009, 18: 137–149 [19] Heberling J M, Fridley J D. Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 2012, 21(12): 1137–1146 [20] Wright J P, Sutton-grier A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions?. Functional Ecology, 2012, 26: 1390–1398 [21] Maire V, Gross N, Hill D, et al. Disentangling coordination among functional traits using an individual-centred model: impact on plant performance at intra-and inter-specific levels. PLOS ONE, 2013, 8: e77372 [22] Walters M B, Gerlach J P. Intraspecific growth and functional leaf trait responses to natural soil resource gradients for conifer species with contrasting leaf habit. Tree Physiology, 2013, 33: 297–310 [23] 周兴民. 中国嵩草草甸. 北京: 科学出版社, 2001 [24] 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159–166 [25] 马建静, 吉成均, 韩梅, 等. 青藏高原高寒草地和内蒙古高原温带草地主要双子叶植物叶片解剖特征的比较研究. 中国科学: 生命科学, 2012, 42: 158– 172 [26] Geng Y, Wang L, Jin D, et al. Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 2014, 175 (2): 445–455 [27] Hong J, Wang X, Wu J. Stoichiometry of root and leaf nitrogen and phosphorus in a dry alpine steppe on the northern Tibetan Plateau. PLOS ONE, 2014: e109052 [28] 李英年, 赵新全, 曹广民, 等. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析. 高原气象, 2004, 23(4): 558–567 [29] 赵新全, 周兴民. 青藏高原高寒草甸生态系统管理的生态学基础: 海北高寒草甸生态系统研究站. 人类环境杂志, 1999, 28(8): 642–647 [30] Kuo S. Methods of soil analysis, Part 3, Chemical methods. Madison: Soil Science Society of America, 1996: 869–919 [31] Adamidis G C, Kazakou E, Fyllas N M, et al. Species adaptive strategies and leaf economic relationships across serpentine and non-serpentine habitats on Lesbos, eastern Mediterranean. PLOS ONE, 2014, 9

(5): e96034 [32] Padgett P E, Allen E B. Differential responses to nitrogen fertilization in native shrubs and exotic annuals common to Mediterranean coastal sage scrub of California. Plant Ecology, 1999, 144(1): 93–101 [33] Lawrence D. Nitrogen and phosphorus enhance growth and luxury consumption of four secondary forest tree species in Borneo. Journal of Tropical Ecology, 2001, 17(6): 859–869 [34] Xia J, Wan S. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 2008, 179(2): 428–439 [35] 胡文祥, 李伟, 杜国祯. 基于物种性状的两种高寒草甸优势禾草对施肥的响应. 兰州大学学报(自然科学版), 2011, 47(6): 68–74 [36] 宾振钧, 王静静, 张文鹏, 等. 氮肥添加对青藏高原高寒草甸 6 个群落优势种生态化学计量学特征的影响. 植物生态学报, 2014, 38(3): 231–237 [37] 宾振钧, 张仁懿, 张文鹏, 等. 氮磷硅添加对青藏高原高寒草甸垂穗披碱草叶片碳氮磷的影响. 生态学报, 2015, 35(14): 1–10 [38] 赵新风, 徐海量, 张鹏, 等. 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响. 植物生态学报, 2014, 38(2): 134–146 [39] Garnier E, Vancaeyzeele S. Carbon and nitrogen content of congeneric annual and perennial grass species: relationships with growth. Plant, Cell & Environment, 1994, 17(4): 399–407 [40] Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 2001, 15(3): 351–359 [41] Wilson P J, Thompson K E N, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143(1): 155–162 [42] Li Y, Johnson D A, Su Y, et al. Specific leaf area and leaf dry matter content of plants growing in sand dunes. Botanical Bulletin of Academia Sinica, 2005, 46: 127–134 [43] Aerts R, Chapin III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1–67 [44] Chapin III F S. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 1980, 11: 233–260 [45] Van Wijk M T, Williams M, Gough L, et al. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?. Journal of Ecology, 2003, 91(4): 664–676 [46] Funk J L, Jones C G, Lerdau M T. Leaf-and shootlevel plasticity in response to different nutrient and water availabilities. Tree Physiology, 2007, 27(12): 1731–1739 [47] Pontes D S L, Louault F, Carrère P, et al. The role of plant traits and their plasticity in the response of pasture grasses to nutrients and cutting frequency. Annals of Botany, 2010: mcq066 [48] Fonseca C R, Overton J M, Collins B, et al. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 2000, 88(6): 964–977 [49] Pensa M, Karu H, Luud A, et al. Within-species correlations in leaf traits of three boreal plant species along a latitudinal gradient. Plant Ecology, 2010, 208(1): 155–166 [50] Wright I J, Reich P B, Cornelissen J H, et al. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14(5): 411–421 [51] Cordell S, Goldstein G, Meinzer F C, et al. Morphological and physiological adjustment to N and P fertilization in nutrient-limited Metrosideros polymorpha canopy trees in Hawaii. Tree Physiology, 2001, 21: 43–50 [52] Bubier J L, Smith R, Juutinen S, et al. Evects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs. Oecologia, 2011, 167: 355–368 [53] Van de Weg M J, Shaver G R, Salmon V G. Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic. Plant Ecology, 2013, 214: 1273–1286

Newspapers in Chinese (Simplified)

Newspapers from China

© PressReader. All rights reserved.