Zircon Geochronology and Hf Isotopes of Daning and Chudong Intrusions, Guangxi Prvince

GUO Lishuang1,2,3, LÜ Xin4, WANG Zhenghua5, MAO Zuoguo6, ZHANG Jilin7, LIU Yulin3,†, CHEN Xu8

ACTA Scientiarum Naturalium Universitatis Pekinensis - - Contents - GUO Lishuang, LÜ Xin, WANG Zhenghua, et al

1. Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085; 2. Key Laboratory of Crustal Dynamics, China Earthquake Administration, Beijing 100085; 3. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing 100871; 4. Development Research Center of China Geological Survey, Beijing 100037; 5. Wanbao Mining Ltd., Beijing 100053; 6. Jinqi Mining Ltd., China National Gold Group Corporation, Hezhou 542800; 7. Jinyou Geological Exploring Ltd., Beijing 100070; 8. Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802; † Corresponding author, E-mail: ylliu@pku.edu.cn

Abstract LA-ICP-MS zircon U-PB dating for Daning pluton, dark inclusions and Chudong pluton yield the weighted mean 206Pb/238pb ages of 441.1±3.0 Ma, 439.5±3.6 Ma and 423.5434.2 Ma, respectively, revealing that Daning pluton and the dark inclusions were formed almost concurrently, while the Daning pluton was intruded by the Chudong pluton. In-situ zircon Lu-hf isotopic analyses of Daning pluton, dark inclusions and Chudong pluton show same characteristics with negative εhf(t) values, plotted within the revolution areas of the 14401960 Ma old continental crust in the age vs. εhf(t) diagrams. The Hf isotopic characteristics indicate that the magmas could be derived from the partial melting of Early Proterozoic to Mesoproterozoic crust materials. The dark inclusions were produced by the fractional crystallization of parental magma. The Chudong pluton was the advanced stage product of the magma crystallization differentiation. Key words zircon U-PB dating; Hf isotopes; Daning pluton; Chudong pluton

华南板块由扬子板块和华夏板块在晚元古代拼合而成, 之后经历加里东期、印支期和燕山期多次岩浆与构造事件作用[19]。Ting[10]将与欧洲加里东期对应的华南板块运动事件命名为“广西期”。因该时期发育多种类型的优势矿产, 近年来, 有关这一时期的岩浆岩、变质岩、大地构造演化, 特别是与成矿的联系等方面的研究逐渐成为热点, 发表了大量地球化学及年代学数据。基于这些数据, Wang

[5]等 认为华南加里东期岩浆侵入事件主要发生在400~460 Ma, 指出这些岩浆岩源区主要为元古代变质泥岩和变质岩浆岩, 并有新生地壳组分的加入。大宁岩体是加里东期代表性花岗岩岩基之一,位于扬子与华夏板块结合带的江山绍兴断裂带东北侧(图 1)。岩体主要由花岗质岩石组成, 岩体内广泛分布细粒暗色闪长质包体。因岩体内部及周围有数量较多的有色多金属矿床(如龙水、冷水冲金矿, 张公岭、初洞银金铅锌矿等)而备受关注,研究者从花岗岩以及其中暗色包体成因、花岗岩与成矿的关系等方面开展了成岩成矿作用研究[1115]。受早期同位素实验室仪器设备、实验条件和技术方法等限制, 前人给出的岩体年龄数据主要采用 KAR和 Rb-sr 法获得, 例如广西壮族自治区地质局用 K-AR法测定大宁岩体侵入年龄为 445 Ma 和 407 Ma。近年来, 随着测试技术的发展, 程顺波等[11]利用锆石 SHRIMP U-PB 法得到大宁岩体晚期次钾长花岗岩的成岩年龄为 419.1±6.4 Ma, 但是仅限定了大宁岩体形成时代的上限, 未能限定大宁岩体形成时代的下限。不仅如此, 迄今获得的地球化学数据非常有限, 因此制约了对该岩体岩石成因及与成矿关系的认识。此外, 在大宁岩体的内部出露一个石英斑岩体——初洞岩体, 前人认为该岩体是“凝灰岩岩筒”[16]或“流纹质碎斑岩”[17], 且与成矿关系不大[16]。我们通过野外调研发现, 初洞岩体应该是一个浅成斑岩体, 其中稀疏浸染状硫化物非常发育,并在斑岩体内或其附近已发现具有一定规模的块状硫化物脉, 说明该岩体与多金属硫化物的成矿关系很密切, 值得做深入研究。目前对于其成岩年龄和岩石成因及其与大宁岩体的关系依然不清楚, 制约了对大宁岩体与初洞岩体的成因联系的判断, 也制约了对张公岭矿区与初洞矿区的成矿联系和找矿方向的判断。

本文利用锆石 LA-ICP-MS U-PB 测年, 厘定大宁岩体及初洞岩体的成岩时代, 利用锆石 Lu-hf 同位素进行岩浆源区分析, 对初洞岩体与大宁岩体的形成时代、成因关系及大地构造背景进行探讨, 从而为张公岭矿区和初洞矿区的找矿方向提供依据。

1 区域地质背景及样品特征

大宁岩体位于广西贺州市与广东省的交界处,呈 NW-SE 向带状分布(图 1), 面积为 492 km2。岩体的西侧为姑婆山岩体, 南侧为连阳岩体(图 1), 两

[1820]者的侵入时代为晚侏罗世 。大宁岩体为多次侵入的复式岩体, 侵入于寒武纪、震旦纪和南华纪围岩地层, 被中泥盆统信都组不整合覆盖[1112]。岩体以中粗粒斑状花岗闪长岩为主, 局部有石英闪长岩和二长花岗岩, 发育一些细粒黑云母花岗岩、花岗斑岩、花岗闪长斑岩、花岗细晶岩脉和花岗伟晶岩脉, 岩体中含有大量暗色闪长质包体。

初洞岩体位于大宁岩体的东南端(图 2), 杭长松[16]认为是一个牛头状凝灰岩筒, 北面及东北面分别伸出长 500 m 及 800 m 的牛角形岩枝, 汪劲草

[17]等 认为是底劈构造成因的流纹质碎斑岩。我们对初洞岩体地表和钻孔样品的显微镜下观察, 发现初洞岩体是一个石英斑岩体, 而非凝灰岩岩筒或流纹质碎斑岩。

大宁岩体的样品 DN-1 和 DN-2 采集自张公岭尾矿坝附近的新鲜露头。DN-1 为中粒斑状黑云母花岗闪长岩, 斑晶占 60%, 斑晶矿物主要为石英(50%)、斜长石(20%)、正长石(10%)和角闪石(15%)等; 基质为长英质, 出现轻微绢云母化蚀变; 副矿物有榍石、锆石、磷灰石、磁铁矿和金红石(图3(a)和(b))。DN-2 是岩体内暗色捕虏体样品, 为中细粒二长闪长岩, 主要矿物为角闪石(25%)、斜长石(20%)、正长石(20%)和石英(15%), 次要矿物为黑云母, 角闪石和黑云母有轻微绿泥石化和绿帘石化蚀变, 副矿物为榍石、磷灰石和磁铁矿(图 3(c)和(d))。

初洞岩体的样品 CD-1 采自初洞矿区野外露头, ZK8229-14 采自初洞矿区钻孔。CD-1 为中粒石英斑岩, 斑晶约占 70%, 其中 90%为石英斑晶, 含少量的长石斑晶; 基质为长英质, 出现绢云母化蚀变, 副矿物有磷灰石、榍石和金红石等(图 3(e))。

ZK8229-14 为细粒石英斑岩, 斑晶约占 50%, 其中石英斑晶约 80%, 长石斑晶 20%; 基质黄铁矿化、绢云母化蚀变相对较强, 副矿物为榍石和磷灰石(图 3(f))。

2 测试方法

用于 U-PB 年龄测试的锆石分选由廊坊市诚信地质服务有限公司完成。阴极发光(CL)图像拍摄在 北京大学电镜室的扫描电子显微镜上完成。锆石LA-ICP-MS U-PB 年龄测定在南京大学内生金属矿床成矿机制研究国家重点实验室完成。实验仪器为New Wave 激光剥蚀系统和 Agilent 7500a 型 ICPMS。工作参数为: Ar 气流量 1 L/min, He 气流量0.9~1.2 L/min, 剥蚀系统激光波长 213 nm, 激光脉冲频率 5 Hz, 剥蚀孔径 30 μm, 脉冲能量 10~20 J/cm2。同位素分馏校正采用标样 GEMOC/GJ-1, 标

样年龄测试值为 609 MA[21]。ICP-MS 的分析数据通过即时分析软件 GLITTER 计算获得同位素比值、年龄和误差。普通铅校正采用文献[22]的方法, 校正后最终结果用 Isoplot 程序完成年龄计算。锆石 Hf 同位素测试在中国地质科学院矿产资源研究所国土资源部成矿作用与资源评价重点实验室完成。测试仪器为 Finnigan Neptune 型多接受等离子质谱仪和 Newwave UP213 激光剥蚀系统, 在锆石 U-PB 分析点上进行。实验过程采用 He 作为载气, 激光束斑直径为 40 μm, 测定时采用锆石国际标样 GJ-1 作为外标。仪器运行条件和详细分析流程见文献[23]。分析过程中锆石外标 GJ-1 的176Hf/177hf 加权平均值为 0.282012±24 (2σ, n=6), 在误差范围内与文献[2324]一致。

3测试结果3.1锆石 U-PB 年代学

大宁岩体及初洞岩体中的锆石均呈半自形至自形, 颜色为无色透明至浅棕色, 大多数锆石的 CL图像中均可见明显的振荡环带。大宁岩体黑云母花岗闪长岩及其暗色包体(DN-1 和 DN-2)中锆石大部分呈半自形柱状(图 4)。初洞石英斑岩体(CD-1 和ZK8229-14)中锆石自形程度相对较高, 大部分结晶良好, 外形为浑圆短柱状至柱状(图 4)。全部锆石TH/U 比值较高(>0.1), 为岩浆锆石典型特征[25]。锆石 U-PB 分析结果列于表 1, 谐和图见图 5。

大宁岩体黑云母花岗闪长岩样品(DN-1)共分析29 个测点, 其中 5, 6 和 14 号点的 206PB/238U 的表观年龄偏低, 分别为 367, 335 和 326 Ma, 可能受到后期流体作用, 经历严重的 Pb 丢失[26], 在计算平均年龄时剔除。其余 26 个测点给出 206PB/238U 表观年龄 416±7~456±7 Ma, 并在锆石 U-PB 年龄谐和图上成群分布, 其 206PB/238U 加权平均年龄为 441.1± 3.0 Ma, MSWD=1.3 (图 5(a))。该年龄解释为大宁岩体黑云母花岗闪长岩的侵入时代。大宁岩体中细粒二长闪长岩暗色捕虏样品(DN-2)共分析 26 个测点, 其中 6, 19 和 26 号测点的 206PB/238U 表观年龄偏低, 分别为 256, 247 和260 Ma, 可能受到后期流体作用, 经历严重的 Pb丢失[26],在计算平均年龄时剔除。其余 23 个测点给出 206PB/238U 表观年龄 423±6~449±7 Ma, 并在锆石 U-PB 年龄谐和图上成群分布, 其 206PB/238U 加权平均年龄为 439.5±3.6 Ma, MSWD=1.6 (图 5(b))。该年龄代表大宁岩体中暗色捕掳体的结晶年龄。

初洞岩体地表石英斑岩样品(CD-1)共分析 37个测点, 其中含有部分较老的离群年龄(测点 9, 10, 16), 为继承锆石, CL 图像中可以见到清晰的继承锆石核。另外, 有少量年轻的离群值(测点 6, 8, 11, 22, 26, 28, 29, 32, 34), U 含量高, 可能受到后期流体作用, 经历严重的 Pb 丢失[26], 在计算平均年龄时剔除。其余 25 个测点给出 206PB/238U 表观年龄 410±6~442±6 Ma, 并在锆石 U-PB 年龄谐和图上成群分布, 其 206PB/238U 加权平均年龄为 423.5±2.9 Ma, MSWD=1.4 (图 5(c))。该年龄代表初洞岩体中粒石英斑岩的结晶年龄。

初洞岩体钻孔石英斑岩样品(ZK8229-14)共分析 37 个测点, 其中测点 1, 11, 19, 26, 32 和 36 的206PB/238U 表观年龄偏低, 分别为 249, 138, 343, 402, 301 和 411 Ma, 且偏离一致线, 在计算平均年龄时剔除。其余 31 个测点给出 206PB/238U 表观年龄412±6~449±7 Ma, 并在锆石 U-PB 年龄谐和图上成群分布, 其 206PB/238U 加权平均年龄为 434.2±3.7 Ma, MSWD=2.7 (图 5(d))。这一年龄解释为初洞岩体细粒石英斑岩的结晶年龄。

3.2 锆石 Hf同位素组成特征

在锆石 LA-ICP-MS 定年的基础上, 挑选年龄较谐和的锆石, 在年龄分析点的同一位置上进行LA-MC-ICP-MS 微区原位 Hf 同位素分析。所测定的 4 个样品锆石 Lu-hf 同位素数据见表 2, 计算结果见图6。所有锆石颗粒分析的 176Lu/177hf 值均小于0.010, 具有中酸性岩石的典型特征, 因而可以用平均大陆地壳模式年龄 TDMC来讨论其源区特征。

样品 DN-1 (大宁岩体黑云母花岗闪长岩)的锆石 176Hf/177hf 比值在 0.282267~0.282489 之间, 用加权平均年龄(441.1 Ma)计算得到的初始 Hf 同位素组成 εhf(t)为−8.4~−0.6, 落在 1.96 Ga 和 1.44 Ga 平

均地壳演化线范围内(图 6)。Hf 同位素亏损地幔单阶段模式年龄 TDM(HF)的变化范围为 1081~1388 Ma,平均地壳模式年龄 TDMC(HF)的变化范围为 1462~ 1957 Ma。

样品 DN-2 (中细粒二长闪长岩暗色捕虏)的锆石 176Hf/177hf 比值在 0.282335~0.282447 之间, 用加权平均年龄(439.5 Ma)计算得到的初始 Hf 同位素组成 εhf(t)为−5.9~−2.1, 落在 1.8 Ga 和 1.56 Ga 平均地壳演化线范围内(图 6)。Hf 同位素亏损地幔单阶段模式年龄 TDM(HF)的变化范围为 1140~1281 Ma,平均地壳模式年龄 TDMC(HF)的变化范围为1557~ 1794 Ma。

样品 CD-1 (石英斑岩)的锆石 176Hf/177hf 比值在 0.282343~0.282499 之间, 用加权平均年龄(423.5 Ma)计算得到的初始 Hf 同位素组成 εhf(t)为−6.1~ −1.2, 落在 1.8 Ga 和 1.44 Ga 平均地壳演化线范围(图 6)。Hf 同位素亏损地幔单阶段模式年龄 TDM(HF)的变化范围为 1061~1278 Ma, 平均地壳模式年龄TDMC(HF)的变化范围为 1446~1795 Ma。

样品 ZK8229-14 (石英斑岩)的锆石 176Hf/177hf比值在 0.282347~0.282462 之间, 用加权平均年龄(434.2 Ma)计算得到的初始 Hf 同位素组成 εhf(t)为−5.7~−2.0, 落在 1.8 Ga 和 1.56 Ga平均地壳演化线范围内(图 6)。Hf 同位素亏损地幔单阶段模式年龄TDM(HF)的变化范围为 1145~1264 Ma, 平均地壳模式年龄 TDMC(HF)的变化范围为 1537~1777 Ma。

4讨论4.1大宁岩体与初洞岩体成岩时代

大宁岩体侵入寒武纪、震旦纪和南华纪地层,

被泥盆纪地层不整合覆盖, 大宁岩体侵入时代应限制为奥陶纪到志留纪。广西壮族自治区地质局①用K-AR 法测定大宁岩体侵入年龄为 445 Ma 和 407 Ma, 程顺波等[11]用锆石 U-PB SHRIMP 法得到晚期钾长花岗岩的年龄为 419.1±6.4 Ma。本文利用锆石U-PB LA-ICP-MS 方法, 测得大宁岩体早期黑云母花岗闪长岩的年龄为 441.1±3.0 Ma, 与晚期钾长花岗岩的年龄相结合, 限定大宁岩体的形成时代为志留纪。大宁岩体中暗色包体(DN-2)年龄为 439.5± 3.6 Ma, 在误差范围内与大宁岩体年龄一致, 且暗色包体中锆石样品 TH/U 值均小于 0.1, 环带特征明显, 不存在继承锆石核, 说明暗色包体与岩体几乎同期形成。

初洞岩体位于大宁岩体张公岭银金铅锌多金属矿区的东部。前人从构造地质学、地球化学、矿物学和流体包裹体等方面对张公岭矿区开展过一些研究[13,2730], 而对初洞矿段的勘探较晚, 野外地勘人员认为该岩体为一个与大宁岩体呈侵入接触的凝灰岩岩体, 并做了极少量的岩相学和矿物学工作。对初洞岩体, 几乎没有系统的研究。本研究首次采用 LA-ICP-MS 方法对初洞岩体地表和钻孔样品开展锆石 U-PB 年代学研究, 获得初洞岩体样品CD-1 和 ZK8229-14 的年龄分别为 423.5±2.9 Ma 和434.2±3.7 Ma, 代表初洞岩体的成岩时代。初洞岩体的成岩时代略晚于大宁岩体, 且两个样品年龄在 误差范围内不一致, 说明初洞岩体在大宁岩体形成之后侵入, 也属于加里东期岩体, 并可能存在多期侵入过程。该岩浆活动时间与华南板块在早古生晚奥陶到志留纪(400~460 Ma)发生加里东期(一些学

[3133]者采用“广西期”)造山运动 的时间一致, 也属于该造山运动的产物。样品 CD-1 中存在 3 个古老的继承锆石年龄: 1047±13, 1099±15 和 772±13 Ma,明显小于锆石平均地壳模式年龄(1446~1795 Ma),可能为中元古代到晚元古代扬子板块与华夏板块闭合时产生的岩浆锆石残留[2,4,3435]。

近期, 一些研究者对造山带片麻岩相和角闪岩相变质岩以及同碰撞产生的深熔岩浆岩进行锆石、独居石 U-PB 年代学测试, 得到主碰撞期年代约为460~420 Ma (峰期变质时期为 450~430 Ma), 后碰撞期年代约为 420~400 Ma, 并在之后受到印支期

[3640]和燕山期改造 。大宁岩体和初洞岩体的所有样品中均出现少量年轻锆石, 年龄变化在 100~400 Ma 之间, 可能与三叠纪印支期及侏罗纪白垩纪燕山期构造运动引起的流体作用有关[5,7]。

4.2 大宁岩体与初洞岩体岩石成因

钟自云等[15]将大宁岩体归为 I 型花岗岩。程顺波等[11]通过地球化学和同位素分析, 认为大宁岩体属于弱过铝高钾钙碱性侵入岩, 富集大离子亲石元素和轻稀土元素, 具高 Sr 低 Nd 的同位素组成特征, 主要来源于下地壳古元古代变砂屑岩部分熔

融。本文获得大宁岩体黑云母花岗闪长岩样品(DN-1)的 εhf(t)为−8.4~−0.6, 结合前人获得的大宁岩体 Sr, Nd 同位素特征[11], 可以判断大宁岩体可能为下地壳古老变质沉积物重熔的产物。前人根据Nd 同位素模式年龄, 确定中国东南地区地壳增长主要时期为 1.8~2.2 Ga 和 1.5~1.8 Ga[12,4143],本文获得的锆石 Hf 同位素二阶段平均地壳模式年龄(1.44~1.96 Ga)与该区域地壳主要增长期相同,进一步确认了古元古代晚期地壳物质为大宁岩体的源区。

大宁岩体中存在大量暗色包体, 暗色包体的存在对花岗岩的形成演化有重要的指示意义[45 45]。前人对钙碱性花岗岩中暗色包体的成因认识有分歧, 主要观点有: 1) 源区部分熔融残留物[4647]; 2) 岩浆侵位过程中捕获围岩的捕掳体[48]; 3) 岩浆早期分离结晶作用产物[49]; 4) 酸性岩浆与基性岩浆混合作用的产物, 铁镁质包体代表混合过程中基性

[5052]端元组分 。大宁岩体母岩与暗色包体具有相似的 Hf 同位素组成(图 6), 均表现为壳源特征, 表明其中暗色包体与母岩为同源岩浆演化作用的产物, 排除了岩浆混合和捕获围岩成因的可能性。大宁岩体中暗色包体表现为典型侵入岩特征(图 3(c)和(d)), 表明这些暗色包体不可能是岩浆源区残留

[11]产物。程顺波等 对大宁岩体的岩石地球化学特征研究发现, 大宁岩体从早期的二长闪长岩到晚期的钾长花岗岩表现出结晶分异特征, 表明岩浆经历了一定程度的分离结晶, 说明大宁岩体暗色包体为岩浆分离结晶作用的产物。Zhang 等[53]对江山绍兴断裂带两侧花岗岩的研究表明, 400~462 Ma 的花岗岩来自前寒武基底(变质泥岩和变质玄武岩)和少

[14]量年轻地幔。沙连堃等 获得的具有典型火成斑状结构的暗色包体表现出典型的幔源 Sr 同位素组成特征(87Sr/86sr 初始比值为 0.7046~0.7065), 为壳幔岩浆混合作用产物, 说明大宁岩体中广泛发育的暗色包体可能具有不同的成因, 既有分离结晶作用,也有岩浆混合作用。

初洞岩体(CD-1 和 ZK8229-14)锆石的初始 Hf同位素组成 εhf(t)为−6.1~−1.2, 落在 1.8 Ga 和 1.56 Ga 平均地壳演化线范围内(图 6)。Hf 同位素亏损地幔单阶段模式年龄 TDM(HF)的变化范围为1061~ 1278 Ma, 平均地壳模式年龄 TDMC(HF)的变化范围为 1446~1795 Ma, 与大宁岩体具有相似的 Hf 同位素组成特征和平均地壳模式年龄(表 2, 图 6), 说明 初洞岩体与大宁岩体为同源岩浆演化产物, 即古元古代至中元古代地壳部分熔融, 并与少量幔源物质发生岩浆混合。大宁岩体经历了一定的结晶分异作用, 而初洞岩体形成时代略晚于大宁岩体, 岩性为更加酸性的石英斑岩, 说明初洞岩体可能为大宁岩体结晶分异晚期产物。

5 结论

广西大宁岩体为黑云母花岗闪长岩, 成岩年龄为 441.1±3.0 Ma, 其内暗色二长闪长岩包体年龄为439.5±3.6 Ma, 大宁岩体内晚期侵入岩体初洞石英斑岩年龄为 423.5~434.2 Ma, 表明大宁岩体及其暗色包体和初洞岩体均为加里东期岩浆活动的产物,且初洞石英斑岩体为晚期侵入体。

大宁岩体中暗色包体与主岩具有相似的 Hf 同位素组成特征, 暗色包体可能为岩浆分离结晶作用的产物。初洞岩体与大宁岩体也具有相似的 Hf 同位素组成特征, 表明二者的岩浆源区均来自早元古代至中元古代地壳物质, 初洞岩体是大宁岩体结晶分异晚期产物。

参考文献

[1] Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly. Earthscience Reviews, 2007, 82: 217256 [2] Charvet J, Shu L S, Shi Y S, et al. The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers. Journal of Southeast Asian Earth Sciences, 1996, 13: 223235 [3] Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 2005, 136(1): 5166 [4] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-PB zircon ages, geochemistry and Nd-hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 2009, 174: 117128 [5] Wang Y J, Fan W M, Zhang G W. Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Research, 2013, 23(4): 12731305 [6] Zheng Y F, Xiao W J, Zhao G C. Introduction to

tectonics of China. Gondwana Research, 2013, 23(4): 11891206 [7] 李献华. 华南地壳增长和构造演化的年代学格架与同位素体系制约. 矿物岩石地球化学, 1993(3): 111 115 [8] 王德滋. 华南花岗岩研究的回顾与展望. 高校地质学报, 2004, 10(3): 305314 [9] 周新民. 对华南花岗岩研究的若干思考. 高校地质学报, 2003, 9(4): 556565 [10] Ting V. The orogenic movements in China. Bulletin of the Geological Society of China, 1929, 8(2): 151170 [11] 程顺波, 付建明, 徐德明, 等. 桂东北大宁岩体锆石 SHRIMP 年代学和地球化学研究. 中国地质, 2009, 36(6): 12781288 [12] 王建辉. 大宁岩体的基本特征及其与成矿作用的关系. 矿产与地质, 2006, 20(6): 618622 [13] 杨志强. 广西鹰扬关张公岭地区银金矿成矿地球化学特征及找矿标志. 矿产与地质, 2002, 16(4): 224228 [14] 沙连堃, 袁奎荣. 广西大宁花岗闪长岩中暗色微粒包体的地球化学及成因模式. 地球科学: 中国地质大学学报, 1991, 16(4): 377386 [15] 钟自云, 骆靖中. 大宁花岗闪长岩体的成因类型与地质特征. 桂林冶金地质学院学报, 1983(4): 2132 [16] 杭长松. 广西张公岭铅锌银矿区银的矿化特征的初步研究. 地质论评, 1980, 26(5): 414419 [17] 汪劲草, 王正云. 初洞流纹质碎斑岩: 一种底辟构造岩. 矿产与地质, 1995, 9(4): 252256 [18] 高剑峰, 凌洪飞, 沈渭洲, 等. 粤西连阳复式岩体的地球化学特征及其成因研究. 岩石学报, 2005, 21(6): 16451656 [19] 赵葵东, 蒋少涌, 朱金初, 等. 桂东北花山姑婆山侵入杂岩体和暗色包体的锆石微区 Hf 同位素组成及其成岩指示意义. 科学通报, 2009, 54(23): 3716 3725 [20] 朱金初, 张佩华, 谢才富, 等. 南岭西段花山-姑婆山侵入岩带锆石 U-PB 年龄格架及其地质意义. 岩石学报, 2006, 22(9): 22702278 [21] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-PB zircon geochronology. Chemical Geology, 2004, 211(1): 4769 [22] Andersen T. Correction of common lead in U-PB analyses that do not report 204Pb. Chemical Geology, 2002, 192(1): 5979

[23] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS 锆石Hf 同位素的分析方法及地质应用. 岩石学报, 2007, 23(10): 25952604 [24] Elhlou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of Gj-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta Supplement, 2006, 70(18): 407421 [25] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 2000, 18(4): 423439 [26] Cox R A, Wilton D H C. Laser-ablation U-TH-PB in situ dating of zircon and allanite: an example from the October Harbour granite, central coastal Labrador, Canada. The Canadian Mineralogist, 2003, 41(2): 273291 [27] 盛云台, 袁奎荣. 张公岭银金矿花岗岩断裂带的形成机制发展演化及与金银矿化关系的研究. 桂林冶金地质学院学报, 1983(3): 2338 [28] 邓燕华, 张慧珠, 张乐凯, 等. 张公岭银金矿床中带金银赋存状态及矿化阶段的研究. 桂林冶金地质学院学报, 1983(2): 921 [29] 张乐凯. 张公岭银金多金属矿床成矿物理化学条件.地质找矿论丛, 1993, 8(1): 6272 [30] 王雅静, 张玉书. 广西张公岭金银矿成矿温度及包裹体特征研究. 矿产与地质, 1984(2): 3034 [31] 陈洪德, 侯明才, 许效松, 等. 加里东期华南的盆地演化与层序格架. 成都理工大学学报: 自然科学版, 2006, 33(1): 18 [32] Wang Y J, Zhang A M, Fan W M, et al. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-PB geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-yunkai Domains. Lithos, 2011, 127: 239260 [33] Wang Y J, Wu C M, Zhang A M, et al. Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U-PB geochronology and metamorphism of amphibolites and granulites. Lithos, 2012, 150: 227242 [34] Guo L Z, Shi Y S, Lu H F, et al. The pre-devonian tectonic patterns and evolution of South China. Journal of Southeast Asian Earth Sciences, 1989, 3: 8793 [35] Shu L S, Faure M, Yu J H, et al. Geochronological and geochemical features of the Cathaysia block

(South China): new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 2011, 187: 263276 [36] Li Z X, Li X H, Wartho J, et al. Magmatic and metamorphic events during the early Paleozoic Wuyiyunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. Geological Society of America Bulletin, 2010, 122: 772793 [37] Wang Y J, Fan W M, Zhao G C, et al. Zircon U-PB geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research, 2007, 12(4): 404416 [38] Yang D S, Li X H, Li W X, et al. U-PB and 40Ar-39ar geochronology of the Baiyunshan gneiss (central Guangdong, South China): constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-yunkai) Orogen. Geological Magazine, 2010, 147(4): 481496 [39] O'reilly Y S, Griffin W L. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-PB and Lu-hf isotopic studies of single zircon grains. Chinese Science Bulletin, 2005, 50(18): 20802089 [40] 陈正宏, 李寄嵎, 谢佩珊, 等. 利用 EMP 独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄. 高校地质学报, 2008, 14(1): 115 [41] 陈江峰, 郭新生, 汤加富, 等. 中国东南地壳增长与 Nd 同位素模式年龄. 南京大学学报: 自然科学版, 1999, 35(6): 716 [42] 沈渭洲, 凌洪飞, 李武显, 等. 中国东南部花岗岩类 Nd-sr 同位素研究. 高校地质学报, 1999, 5(1): 2333 [43] 沈渭洲, 凌洪飞, 李武显, 等. 中国东南部花岗岩类的 Nd 模式年龄与地壳演化. 中国科学D辑: 地球科学, 2000, 30(5): 471478 [44] Didier J, Barbarin B. Enclaves and granite petrology (developments in petrology). Amsterdam: Elsevier Science, 1991 [45] Barbarin, B. Mafic magmatic enclaves and Mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, orginal and relations with the hosts. Lithos, 2005, 88: 155177 [46] Chappell B W, White A J R. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 126 [47] Chappell B W, White A J R, Williams I S, et al. Lachlan Fold Belt granites revisited: high- and lowtemperature granites and their implications. Australian Journal of Earth Sciences, 2000, 47: 123138 [48] Kepezhinskas P, Mcdemott F, Defant M J, et al. Trace element and Sr-nd-pb isotopic constraints on a threecomponent model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 1997, 61: 577 600 [49] Depaolo D J. Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth and Planetary Science Letters, 1981, 53: 189202 [50] Bonin B. Do coeval mafic and felsic magmas in postcollisional to within-plate regimes necessarily imply two contrasting, Mantle and crust, sources? A review. Lithos, 2004, 78: 124 [51] Vernon R H. Micro-granitoid enclaves: globules of hybrid Magma quenched in a plutonic environment. Nature, 1984, 304: 438439 [52] Yang J H, Wu F Y, Chung S L, et al. Multiple sources for the origin of granites: geochemical and Nd/sr isotopic evidence from the Gudaoling granite and its mafic enclaves, NE China. Geochimica et Cosmochimica Acta, 2004, 68: 44694483 [53] Zhang F F, Wangy J, Zhang A M, et al. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granites in the eastern South China Block. Lithos, 2012, 150: 188208

(a)和(b) 黑云母花岗闪长岩 DN-1; (c)和(d) 二长闪长岩 DN-2; (e) 中粒石英斑岩 CD-1; (f) 细粒石英斑岩ZK8229-14。Q: 石英; Pl: 斜长石; Kfs: 钾长石; Bi: 黑云母; Hb: 角闪石; Sp: 榍石图 3样品显微图像Fig. 3 Microscopic photos of the samples

图 4 样品锆石阴极发光图像Fig. 4 Cathodeluminescence images of zircons

图 5锆石 U-PB 谐和图Fig. 5 Concordia diagrams of zircon U-PB isotopes

图 6 大宁岩体和初洞岩体锆石 εhf(t )年龄图Fig. 6 εhf(t) vs. age diagram of Daning and Chudong plutons

Newspapers in Chinese (Simplified)

Newspapers from China

© PressReader. All rights reserved.