参考文献

ACTA Scientiarum Naturalium Universitatis Pekinensis - - Contents -

[1] 周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31–40 [2] 赵新全. 高寒草甸生态系统与全球变化. 北京: 科学出版社, 2009 [3] Yao T, shi Y, Thompson L. High resolution record of paleoclimate since the Little Ice Age from the Tibetan ice cores. Quaternary International, 1997, 37(2): 19– 23 [4] Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729–1742 [5] Duan A, Wu G, Zhang Q, et al. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin, 2006, 51(11): 1396–1400 [6] Li L, Yang S, Wang Z, et al. Evidence of warming and wetting climate over the Qinghai-tibet Plateau. Arctic, Antarctic, and Alpine Research, 2010, 42(2): 449–457 [7] Piao S, Ciais P, Huang Y, et al. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43–51 [8] Chen H, Zhu Q, Peng C, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-tibetan Plateau. Global Change Biology, 2013, 19(10): 2940–2955 [9] IPCC. Climate change 2013: summary for policymaker [R]. Valencia, 2013 [10] Shi Y, Ma Y, Ma W, et al. Large scale patterns of forage yield and quality across Chinese grasslands. Chinese Science Bulletin, 2013, 58(10): 1187–1199 [11] Wang S, Duan J, Xu G, et al. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93(11): 2365–2376 [12] Jin Z, Zhuang Q, He J S, et al. Phenology shift from 1989 to 2008 on the Tibetan Plateau: an analysis with a process-based soil physical model and remote sensing data. Climatic Change, 2013, 119(2): 435–449 [13] Geng Y, Wang Z, Liang C, et al. Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Global Ecology and Biogeography, 2012, 21(4): 416–427 [14] Geng Y, Wang Y, Yang K, et al. Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLOS One, 2012, 7(4): e34968 [15] Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14(7): 1592–1599 [16] Tan K, Ciais P, Piao S, et al. Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-tibetan grasslands. Global Biogeochemical Cycles, 2010, 24(1): GB1013 [17] 韩道瑞, 曹广民, 郭小伟, 等. 青藏高原高寒草甸生态系统碳增汇潜力. 生态学报, 2011, 31(24): 7408–7417 [18] Yang Y H, Ma W H, Mohammat A, et al. Storage, patterns and controls of soil nitrogen in China. Pedosphere, 2007, 17(6): 776–785 [19] Baumann F, He J S, Schmidt K, et al. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biology, 2009, 15(12): 3001–3017 [20] Liu W, Chen S, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-tibetan Plateau. Environmental Research Letters, 2012, 7(3): 035401 [21] Yang Y, Ji C, Ma W, et al. Significant soil acidification across northern China’s grasslands

during 1980s–2000s. Global Change Biology, 2012, 18(7): 2292–2300 [22] Ji C J, Yang Y H, Han W X, et al. Climatic and edaphic controls on soil ph in alpine grasslands on the Tibetan Plateau, China: a quantitative analysis. Pedosphere, 2014, 24(1): 39–44 [23] 裴志永, 欧阳华, 周才平. 青藏高原高寒草原碳排放及其迁移过程研究. 生态学报, 2003, 23(2): 231– 236 [24] 李娜, 王根绪, 高永恒, 等. 模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究.土壤学报, 2010, 47(6): 1214–1224 [25] Rui Y C, Wang S P, Xu Z H, et al. Warming and grazing affect soil labile carbon and nitrogen pools differently in an alpine meadow of the Qingha-tibet Plateau in China. Journal of Soils and Sediments, 2011, 11(6): 903–914 [26] Andersson S, Nilsson S I. Influence of ph and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology and Biochemistry, 2001, 33(9): 1181–1191 [27] 衡涛, 吴建国, 谢世友, 等. 高寒草甸土壤碳和氮及微生物生物量碳和氮对温度与降水量变化的响应. 中国农学通报, 2011, 27(3): 425–430 [28] Mastepanov M, Sigsgaard C, Dlugokencky E J, et al. Large tundra methane burst during onset of freezing. Nature, 2008, 456: 628–630 [29] Zhao X Q, Zhou X M. Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 1999, 28(8): 642–647 [30] Wang Y H, Liu H Y, Chung H, et al. Non-growingseason soil respiration is controlled by freezing and thawing processes in the summer monsoondominated Tibetan alpine grassland. Global Biogeochemical Cycles, 2014, 28(10): 1081–1095 [31] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005 [32] Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a repaid direct extraction method to measure microbial biomass nitrgen in soil. Soil Biology and Biochemistry,

1985, 17(6): 837–842 [33] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass-c. Soil Biology and Biochemistry, 1987, 19(6): 703–707 [34] Zheng Y, Yang W, Sun X, et al. Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau. Applied Microbiology and Biotechnology, 2012, 93 (5): 2193–2203 [35] 陈美玲. 模拟增氮和增雨对贝加尔针茅草甸草原的植被、土壤以及土壤真菌群落的影响[D]. 长春: 东北师范大学, 2013 [36] Smith P, Fang C, Dawson J J, et al. Impact of global warming on soil organic carbon. Advances in Agronomy, 2008, 97(7): 1–43 [37] Zhang B, Chen S Y, Zhang J F, et al. Depth-related responses of soil microbial communities toexperimental warming in an alpine meadow on the Qinghaitibet Plateau. European Journal of Soil Science, 2015, 66(3): 496–504 [38] De Vries F T, Manning P, Tallowin J R, et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 2012, 15(11): 1230–1239 [39] Feng X, Simpson A J, Wilson K P, et al. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience, 2008, 1(12): 836–839 [40] Smith P. How long before a change in soil organic carbon can be detected?. Global Change Biology, 2004, 10(11): 1878–1883 [41] Li N, Wang G X, Yang Y, et al. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-tibet Plateau. Soil Biology and Biochemistry, 2011, 43(5): 942–953 [42] Zhang B, Chen S, He X, et al. Responses of soil microbial communities to experimental warming in alpine grasslands on the Qinghai-tibet Plateau. PLOS One, 2014, 9(8): e103859 [43] Davidson E A, Verchot L V, Cattânio J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia.

Biogeochemistry, 2000, 48(1): 53–69 [44] Clark J S, Campbell J H, Grizzle H, et al. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microbial Ecology, 2009, 57(2): 248–260 [45] Liu W X, Zhang ZH E, Wan S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15(1): 184– 195 [46] Fu G, Shen Z X, Zhang X Z, et al. Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau. Applied Soil Ecology, 2012, 61: 158–160 [47] Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 2000, 404: 858–861 [48] 黄昌勇. 土壤学. 北京: 中国农业出版社, 2009 [49] Dexter A. Soil physical quality: Part I. theory, effects

of soil texture, density, and organic matter, and effects on root growth. Geoderma, 2004, 120(3/4): 201–214 [50] Bronick C J, Lal R. Soil structure and management: a review. Geoderma, 2005, 124(1/2): 3–22 [51] Yang H J, Li Y, Wu M Y, et al. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 2011, 17(9): 2936–2944 [52] Tan K, Ciais P, Piao S L, et al. Application of the ORCHIDEE global vegetation model to evaluate biomass and soil carbon stocks of Qinghai-tibetan grasslands. Global Biogeochemical Cycles, 2010, 24(1): 425–427 [53] 王蓓, 孙庚, 罗鹏, 等. 模拟升温和放牧对高寒草甸土壤有机碳氮组分和微生物生物量的影响. 生态学报, 2011, 31(6): 1506–1514 [54] Yang Y H, Fang J Y, Ji C J, et al. Above and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 2009, 20(1): 177–184

Newspapers in Chinese (Simplified)

Newspapers from China

© PressReader. All rights reserved.