参考文献

ACTA Scientiarum Naturalium Universitatis Pekinensis - - Contents -

[1] Sepkoski J J. A factor analytic description of the

36‒53 Phanerozoic marine fossil record. Paleobiology, 1981, 7(1): [2] Webby B D, Paris F, Droser M L, et al. The Great Ordovician Biodiversification Event. New York: Columbia University Press, 2004 [3] Harper D A T. The Ordovician Biodiversification:

148‒ setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232: 166 [4] 张元动, 詹仁斌, 樊隽轩, 等. 奥陶纪生物大辐射

129‒143研究的关键科学问题. 中国科学: 地球科学, 2009, 39(2):

3357‒3371 [5] 詹仁斌, 靳吉锁, 刘建波. 奥陶纪生物大辐射研究:回顾与展望. 科学通报, 2013, 58(33): [6] Algeo T J, Marenco P J, Saltzman M R. Co-evolution of oceans, climate, and the biosphere during the

1‒11 ‘Ordovician Revolution’: a review. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 458: [7] Saltzman M R, Berner R A. Pulse of atmospheric

3876‒ oxygen during the late Cambrian. Proceedings of the National Academy of Sciences, 2011, 108(10): 3881

[8] Thompson C K, Kah L C. Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeography,

189‒214 Palaeoclimatology, Palaeoecology, 2012, 313/314: [9] Marenco P J, Marenco K N, Lubitz R L, et al. Contrasting long-term global and short-term local redox proxies during the Great Ordovician Biodiversification Event: a case study from Fossil Mountain, Utah,

45‒51 USA. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 377: [10] Edwards C T. Carbon, sulfur, and strontium isotope stratigraphy of the Lower-middle Ordovician, Great Basin, USA: implications for oxygenation and causes

60‒101 of global biodiversification [D]. Columbus: Ohio State University, 2014: [11] Saltzman M R, Edwards C T, Adrain J M, et al. Persistent oceanic anoxia and elevated extinction

807‒810 rates separate the Cambrian and Ordovician radiations. Geology, 2015, 43(9): [12] Marenco P J, Martin K R, Marenco K N, et al. Increasing global ocean oxygenation and the Ordovician Radiation: Insights from TH/U of carbonates from the Ordovician of western Utah. Palaeogeography 77‒84 Palaeoclimatology Palaeoecology, 2016, 458: [13] Kah L C, Thompson C K, Henderson M A, et al. Behavior of marine sulfur in the Ordovician. Palaeogeography

133‒153 Palaeoclimatology Palaeoecology, 2016, 458:

11‒22, [14] 冯增昭, 彭勇民, 金振奎, 等. 中国南方早奥陶99‒100世岩相古地理. 古地理学报, 2001, 3(2):

10‒24, [15] 冯增昭, 彭勇民, 金振奎, 等. 中国南方中及晚奥96‒99陶世岩相古地理. 古地理学报, 2001, 3(4):

175‒182 [16] 周志毅, 甄勇毅, 周志强, 等. 中国奥陶纪地理区‒层序岩相划纲要. 古地理学报, 2008, 10(2):

38‒45 [17] 马永生, 陈洪德, 王国力. 中国南方构造‒中奥陶世古地理图集. 北京: 科学出版社, 2009: [18] 张元动, 陈旭, Goldman D, 等. 华南早

1164‒1180主要环境下笔石动物的多样性与生物地理分布. 中国科学: 地球科学, 2010, 40(9): [19] 廖翰卿, 刘建波, 吴荣昌, 等. 华南上扬子区下奥

18‒34陶统红花园组顶界的穿时性. 古生物学报, 2013, 52 (1): [20] 李家腾, 刘建波, 孙永超, 等. 华南下扬子区下奥陶统仑山组: 岩石学、地层学和古地理学. 古地理

[21]吴荣昌下、中奥陶统紫台组, 詹仁斌, 李贵鹏. 地层学杂志, 等. 浅论华南扬子区, 2007, 31(4):

[22] 学报, 325‒332报1993,栾晓聪陶统紫台组碳酸盐岩微相与海平面变化. , 2015, 14(3): 2016, , 刘建波17(2): 18(3): 249‒264 , 411‒423詹仁斌, 等. 安徽南部下、中奥古地理学

[23] 张举, 张元动, 宋妍妍. 滇东地区奥陶系红石崖组8‒17的时代. 地层学杂志, 2013, 37(1): ‒奥陶纪大[24] 姜月华, 岳文浙, 业治铮. 中国南方寒武

陆斜坡的特征、演化和有关矿产. 29‒45 火山地质与矿产, [25] 宫维莉, 毕治国, 姜立富, 等. 安徽宁国胡乐地区321‒327奥陶系层序地层学初探. 地层学杂志, 2010, 34(3): [26] 钟思, 刘建波, 闫振. 安徽宁国下奥陶统谭家桥组黑色页岩沉积学特征及环境解释. 古地理学报(出版中)

[27] 穆恩之. 正笔石及正笔石式树形笔石的演化、分类174‒183和分布. 中国科学, 1974(2): [28] 俞剑华, 方一亭, 刘怀宝. 安徽省宁国县胡乐地区1986(12):含笔石地层研究新进展25‒34 . 中国地质科学院院报,

[29] 方一亭, 冯洪真, 俞剑华. 安徽省宁国县胡乐地区269‒278的胡乐组. 地层学杂志, 1989, 13(4): [30] 方一亭, 冯洪真, 俞剑华. 安徽省宁国县胡乐司中730‒740奥陶世胡乐组的笔石. 古生物学报, 1989, 28(6):

[31] 方一亭, 王海峰, 冯洪真, 226‒229等. 论宁国组和胡乐组.地层学杂志, 1991, 15(3):

[32] 宫维莉, 齐敦伦, 毕治国, 等. 安徽宁国胡乐奥陶85‒89系再研究. 安徽地质, 2010, 20(2): [33] Sadler P M, Cooper R A, Melchin M. High-resolution, early Paleozoic (Ordovician-silurian) time scales.

Geological 887‒906 Society of America Bulletin, 2009, 121 [34] Canfield (5/6): D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced

inorganic sulfur in sediments 149‒155 and shales. Chemical Geology, 1986, 54(1): [35] Goldberg T, Poulton S W, Strauss H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China:

diagenetic constraints and seawater 223‒241 evolution. Precambrian Research, 2005, 137(3): [36] Berner R A. Sedimentary pyrite formation: an update. Geochimica 605‒615 et Cosmochimica Acta, 1984, 48(4): [37] Ries J B, Fike D A, Pratt L M, et al. Superheavy pyrite (34Spyr >34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: a consequence of

743‒746 low seawater sulfate at the dawn of animal life. Geology, 2009, 37(8): [38] Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a

855‒862 new theory. Geochimica et Cosmochimica Acta, 1983, 47(5): [39] Raiswell R, Berner R A. Pyrite formation in euxinic

710‒724 and semi-euxinic sediments. American Journal of Science, 1985, 285(8): [40] Strauss H. The isotopic composition of sedimentary

97‒118 sulfur through time. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1):

89‒ [41] Strauss H. Geological evolution from isotope proxy signals — sulfur. Chemical Geology, 1999, 161: 101 [42] Kampschulte A, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis

255‒286 of structurally substituted sulfate in carbonates. Chemical Geology, 2004, 204(3/4): [43] Kah L C, Lyons T W, Frank T D. Low marine sulphate

834‒838 and protracted oxygenation of the Proterozoic biosphere. Nature, 2004, 431: [44] Fike D A, Bradley A S, Rose C V. Rethinking the ancient sulfur cycle. Annual Review of Earth & Planetary Sciences, 2015, 43(1): 593–622 [45] Raab M, Spiro B. Sulfur isotopic variations during seawater evaporation with fractional crystallization.

323‒333 Chemical Geology (Isotope Geoscience section), 1991, 86(4): [46] Harrison A G, Thode H G. Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. 84‒92 Transactions of the Faraday Society, 1958, 54: [47] Kaplan I R, Rittenberg S C. Microbiological fractionation

195‒212 of sulphur isotopes. Microbiology, 1964, 34 (2): [48] Canfield D E. Isotope fractionation by natural populations

1117‒1124 of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 2001, 65(7): [49] Huff W D, Bergström S M, Kolata D R. Ordovician

13‒28 explosive volcanism. Special Paper of the Geological Society of America, 2010, 466: [50] Liu J B. Marine sedimentary response to the Great Ordovician Biodiversification Event: examples from North China and South China. Paleontological Re-

9‒21 search, 2009, 13(1): [51] Dabard M P, Loi A, Paris F, et al. Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): icehouse third-order glacioeustatic

96‒111 cycles. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 436: [52] Williams S H, Stevens R K. Late Tremadoc graptolites

1‒47 from western Newfoundland. Palaeontology, 1991, 34(1): [53] Liu T B, Maynard J B, Alten J. Superheavy S isotopes from glacier-associated sediments of the Neoproterozoic of South China: oceanic anoxia or sulfate limitation?.

205‒222 Memoir of the Geological Society of America, 2006, 198: [54] Shen B, Mao S, Kaufman A J, et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: evidence from carbon and sulfur isotopes in a cap dolostone

209‒228 from northwest China. Earth and Planetary Science Letters, 2008, 265(1): [55] Fry B, Ruf W, Gest H, et al. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous

205‒210 solution. Chemical Geology (Isotope Geoscience Section), 1988, 73(3): [56] Zerkle A L, Farquhar J, Johnston D T, et al. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a

291‒306 green sulfur bacterium. Geochimica et Cosmochimica Acta, 2009, 73(2): [57] 周志毅, 袁文伟, 周志强. 华南陆块奥陶纪三叶虫的辐射 // 戎嘉余. 生物的起源、辐射与生物多样性

197‒214演变——华夏化石记录的启示. 北京: 科学出版社, 2006: [58] Zhou Z Y, Yuan W W, Zhou Z Q. Patterns, processes and likely causes of the Ordovician trilobite radiation in South China. Geological Journal, 2007, 42(3/4): 297–313

215‒224 [59] 李军, Servais T, 燕夔, 等. 中国奥陶纪疑源类多样性曲线. 微体古生物学报, 2008, 25(3): [60] Li J, Servais T, Yan H, et al. Microphytoplankton diversity curves of the Chinese Ordovician. Bulletin 399‒409 de la société Geologiqué de France, 2007, 178(5): [61] 詹仁斌, 戎嘉余, 程金辉, 等. 华南早、中奥陶世

896‒907腕足动物多样性初探. 中国科学: 地球科学, 2004, 34(10):

[62] Zhan R B, Rong J Y, Cheng J H, et al. Early-mid

662‒ Ordovician brachiopod diversification in South China. Science in China: Earth Sciences, 2005, 48(5): 675 [63] Zhang Y D, Chen Xu. Diversity history of Ordovician graptolites and its relationship with environmental

161‒171 change. Science in China: Earth Sciences, 2008, 51 (2):

557‒558 [64] Berner R A, Vandenbrooks J M, Ward P D. Oxygen and evolution. Science, 2007, 316: [65] Dahl T W, Hammarlund E U, Anbar A D, et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory

17911‒17915 fish. Proceedings of the National Academy of Sciences, 2010, 107(42): [66] Berkner L V, Marshall L C. On the origin and rise of

225‒ oxygen concentration in the earth’s atmosphere. Journal of the Atmospheric Sciences, 1965, 22(3): 261

1003‒1005 [67] Raff R A, Raff E C. Respiratory mechanisms and the metazoan fossil record. Nature, 1970, 228: [68] Rhoads D C, Morse J W. Evolutionary and ecologic

413‒428 significance of oxygen-deficient marine basins. Lethaia, 1971, 4(4): [69] Berner R A. Geocarbsulf: a combined model for

5653‒5664 Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 2006, 70(23): [70] Lenton T M, Dahl T W, Daines S J, et al. Earliest land plants created modern levels of atmospheric oxygen.

9704‒ Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9709 [71] Qing H, Veizer J. Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for

4429‒4442 coeval seawater. Geochimica et Cosmochimica Acta, 1994, 58(20): [72] Shields G A, Carden G A F, Veizer J, et al. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-late Ordovician

2005‒2025 transition. Geochimica et Cosmochimica Acta, 2003, 67(11): [73] Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification?

550‒554 Evidence from conodont thermometry. Science, 2008, 321:

Newspapers in Chinese (Simplified)

Newspapers from China

© PressReader. All rights reserved.