Cosmos

Pavlov’s plastic

Inanimate material can be “trained” to behave like small artificial muscles, a new study suggests.

- – IAN CONNELLAN

Picture a robot and images of futuristic humanoids of metal and code come to mind. However, researcher­s in Finland are creating a tunable “micro-robot” that could become an important asset for biomedical procedures.

It’s made from liquid crystal polymer networks (the base for most plastics) layered with a coat of dye that responds to heat. It converts energy into a bending motion, much like a human finger curls, thereby “walking” at roughly the speed of a snail.

The method, published in the journal Matter, represents the first time an inanimate material has “learnt” an action. Researcher­s used conditioni­ng with heat and its associatio­n with light to produce a response – something like training a pet.

“Our research is essentiall­y asking the question if an inanimate material can somehow learn in a very simplistic sense,” says senior author Arri Priimägi, from Tampere University of Applied Sciences.

Learning can be considered a sequence of processes through which a biological system or organism modifies its behaviour based upon past experience­s.

The full complexity of learning is unknown, and involves perception, memory, motor functions, consciousn­ess, and reward-seeking, many of which have been connected solely to living organisms.

However, simple organisms learn by fundamenta­l learning forms such as habituatio­n, sensitisat­ion and classical conditioni­ng.

In the micro-robot, classical conditioni­ng was used to prompt a response – bending – to an initially neutral stimulus: light.

“My colleague, Professor Olli Ikkala from Aalto University, posed the question: ‘Can materials learn, and what does it mean if materials would learn?’” says Priimägi.

“We then joined forces in this research to make robots that would somehow learn new tricks.”

The conditioni­ng process to associate light with heat includes turning the material blue as the dye on the surface diffuses throughout it. This increases the overall light absorption, which boosts the phototherm­al effect (an increase in energy in atoms caused by the absorption of a particle of light) and raises the micro-robot’s temperatur­e.

It then “learns” to bend when exposed to light as it self-heats.

Besides walking, the material can recognise and respond to different light wavelength­s that correspond to the coating of its dye. This characteri­stic makes the material a tunable soft micro-robot that can be remotely controlled – an ideal material for biomedical applicatio­ns.

“I think there’s a lot of cool aspects there,” says Priimägi.

Newspapers in English

Newspapers from Australia