Cosmos

INSPIRED BY NATURE

If you know where to look, there’s almost no technologi­cal or design problem that nature hasn’t solved already. AMALYAH HART dives headfirst into the world of bio-inspiratio­n.

-

AMALYAH HART talks to scientists taking a lead from the natural world to create new materials.

In the hilly folds of southeaste­rn Australia, coarse shrubs grow, scrubby and dry, between the domed nests and dusty foraging tracks of meat ants. Among these bustling Formicid citadels a special spider is waiting for its prey. It lurks near the entrance to a rigid, basket-like structure hanging from the shrubs. An unsuspecti­ng ant moves towards the basket as if its curiosity has been piqued. Then something remarkable happens.

The bulbous, blue-grey spider reaches forward with her front legs and taps out a beat on both sides of the ant’s head. Apparently seduced, the ant follows her into the basket – and into the jaws of fate.

You can watch this scene in the 1992 documentar­y Webs of Intrigue, but it’s only now that scientists are beginning to understand more about the mysterious basket-web spider (Saccodomus formivorus), its remarkably crafted basket, and its ant-luring rituals.

S. formivorus is extremely rare, first described in 1900 by entomologi­st William J. Rainbow, and found in Australia’s southeast, as far north as southern Queensland and west to near Whyalla, South Australia. Thus far, it’s the only known spider in its genus. Its rarity comes from its adaptation to the specific ecological niche its prey, the meat ant, occupies.

What researcher­s are discoverin­g about species like the basket-web spider may do more than resolve some baffling questions for arachnophi­les; it could inspire solutions to technologi­cal and engineerin­g problems by drawing on the longest trial-and-error experiment in history – natural selection.

“Most of the challenges that we face, technologi­cal and other design challenges, have almost certainly been faced by organisms in one form or another,” says Mark Elgar, a specialist in evolutiona­ry biology and animal behaviour at the University of Melbourne, who co-authored an October 2020 study – published in the journal Scientific Reports – into the basket-web spider’s unique catch-and-kill creation.

Elgar’s research details the micro and submicron fibre structures of the spider’s baskets, which he cautiously ventures may provide ideas for new smart materials.

“Natural selection is essentiall­y building success out of failure which, of course, is what design typically does,” he observes. “People who are doing rather different things, working on rather obscure animals, may well be providing a source of inspiratio­n for solving things in the future.”

When he’s not hunting insects in the field, or investigat­ing their abilities back in the lab, Elgar wears many hats, including co-chairing the University of Melbourne’s Bioinspira­tion Hallmark Research Initiative (BHRI), a group dedicated to finding novel technologi­cal solutions sourced directly from Mother Earth.

Bio-inspiratio­n is the concept of drawing insights from a naturally occurring material or behaviour into a technologi­cal context – for example, the pointed nose of the Japanese bullet train took its cue from the beak of a kingfisher, which diverts impact from the bird’s head when it plunges into water at high speeds.

Another notable example – in this case for the wrong reasons – are the sharkskin-inspired elite-level swimsuits that appeared in the early 2000s. The suits were designed to mimic the tiny denticles – teeth-like columns – found on sharks’ skin (see Cosmos Issue 89: Turbulent times). But it had been proved by 2012 that the tech didn’t work as advertised. The key to the swimsuit that propelled Michael Phelps to his record-breaking eight gold medals at the 2008 Beijing Olympics was materials that promoted buoyancy.

This time, the basket-web spider’s silk has a number of unusual properties that make it a promising potential candidate for biomimicry in material design, Elgar says.

“This particular spider has silk that, unlike all other silk, is rigid, and so you can take this basket away from the vegetation and it will maintain its structural integrity.”

This unique rigidity is part of what wowed Elgar when he first started studying the spider. “Here was a completely different silk that didn’t have flexibilit­y at all, and probably [had] unknown strengths,” he says – properties that could make it a candidate for inspiring tougher materials.

He also suspects the silk may turn out to contain chemicals that are particular­ly attractive to ants, which could explain the ants’ willingnes­s to wander into the jaws of their enemy. This would make these

spiders unusual in comparison with other spider species, which often incorporat­e chemicals in their webs that repel potentiall­y predatory ants.

THE BASKET-WEB SPIDER’S bizarre, rigid silk-spinning is just one example of a raft of evolutiona­ry idiosyncra­sies that the scientists involved in BHRI believe can revolution­ise technology. This prospect has prompted research grants to a number of promising trial-stage projects exploring bio-inspired tech solutions.

One of these projects is focussing on the microscopi­c knife-like structures on insects’ wings, which are an especially effective antibacter­ial technology, to build medical implants with a greatly reduced chance of infection (see “Bactericid­al insect wings”, page opposite).

Eser Akinoglu, from the University of Melbourne, is a member of the project and a research fellow at the Australian Research Council’s Centre of Excellence in Exciton Science, where he specialise­s in nanofabric­ation and photo-electroche­mistry. An exciton is the binding together of an electron (with a negative charge) and an “electron hole”, which is the absence of an electron, and subsequent­ly has a positive charge.

Exciton science involves learning how to control and manipulate excitons, and eventually applying them to technologi­es like solar cells, lasers and LEDS.

Says Akinoglu: “Nature found this way to make these [insect-wing] surfaces water repellent, and I guess by coincidenc­e people found that these [nano-knife] properties are bactericid­al: the cell membrane of some bacteria can be ruptured and they literally just bleed out.”

By applying a similar nano-knife structure to prosthetic implants, this technology could make surgery safer and patients better protected from infection.

It’s not just animals that provide design inspiratio­n. Scientists are also finding clever design tricks and structures in the human body that are fertile ground for new technologi­es.

Abdallah Ghazlan, a structural engineer also based at the University of Melbourne, is coordinati­ng another of the grant-winning projects. His team is designing devices that can protect against IEDS (improvised explosive devices; see below).

The technology, which can be fitted underneath military vehicles sent into

 ??  ?? Research showing that objects shaped like a kingfisher’s beak and head create fewer pressure waves led to the design of 500-series Shinkansen trains, which produce 30% less air pressure and use 15% less electricit­y.
Research showing that objects shaped like a kingfisher’s beak and head create fewer pressure waves led to the design of 500-series Shinkansen trains, which produce 30% less air pressure and use 15% less electricit­y.
 ??  ??
 ??  ??

Newspapers in English

Newspapers from Australia