NZV8

SLIPPERY SUBJECT ALL ABOUT OIL

- INTERVIEW: NZV8 PHOTOS: SUPPLIED

Most of you reading this will know enough about engine oil. You’ll understand enough about oil viscosity, zinc content, and API ratings to know the difference between what goes into your daily-driver and what goes into your V8. The tradies among you who drive a late-model diesel vehicle every day may know more than most — after all, you can’t just run any old oil if you’ve got a diesel particulat­e filter (DPF). However, beyond the surface-level stuff, the world of oil is largely a mystery. And, we’ll be the first to admit, it sounds awfully boring. Who really wants to know more about oil? Well, as it turns out, it’s not that boring. We were able to chat with Lake Speed Jr, a respected US-based ‘tribologis­t’ — an oil technician, if you were wondering — who was brought to New Zealand by Craig Hyland from Engine Dynamics. Lake Speed Jr works extensivel­y with the Joe Gibbs Racing Nascar team and has had a long and intensive career in the motorsport industry, and he is the brains behind the premium Driven Racing Oil range of lubricants. We made the most of his enormous knowledge of lubricants to find out more, and dig into some myths, about engine oils.

Hi, Lake Speed Jr. Thanks for taking the time to do this. We’ve got a few questions for you. First of all, do oil additives really work, or are you better to start with a good oil and eliminate the need for additives? The STLE [Society of Tribologis­ts and Lubricatio­n Engineers] have answered that question with a ‘no’ — you should never put an aftermarke­t additive in any crankcase. If you feel that the oil you are using in insufficie­nt for the job it is doing, you should get a different oil, not put something in. In fact, on the exam to get [STLE] certificat­ion, that actually was a question — ‘when is it appropriat­e to use an aftermarke­t additive in a crankcase?’ — and the answer’s never.

Would that extend to oil flush? I’d say so. Some of the oil flushes available do really weird things, and you really ought to be thinking about it. Even if you’ve got this old engine — say, it hasn’t been run for 15 years, and you’ve got no idea about the condition of the internals, then drain out what’s in there and put in a lighter weight of mineral-base oil. Let it run for 20–30 minutes, get heated up, then drain it out and replace it with, say, HR oil [15W-50 mineral base]. The key is in changing the oil when it’s hot — if the oil is not hot, then you’re not draining it all out. You’ve got to get it hot enough so the viscosity thins and it all flows out. Playing with additives is like playing Russian roulette. One guy might say, ‘I used XYZ engine treatment and I picked up 5hp’; well, the other guy might say, ‘I used XYZ engine treatment and I lost five main bearings’. Which one’s lying? Well, neither of them is — the reality is that, in one case, the XYZ additive did not blend well with the additives in the oil already and had a bad result; in the other case, they worked together and it’s OK. Unless you’re a chemist and you know 100 per cent what you have and what you’re adding it to, it’s just a gamble. There’s a lot of guys out there with a lot of money tied up in their motor — is it worth taking that risk?

Is more expensive oil always better? Nope. We get this question frequently — I think I’ve answered this one twice today, already. Race oil is more expensive, but it’s not better. Say I have a car that I drive to work, drive to the odd car show, then take to the track for drags or a drift do. I may think I have a race car, but I don’t, and I don’t maintain it like a proper race car. Race oil is low detergent, low dispersant, and needs changing every 800–1000km — that level of maintenanc­e is not happening with that car. So, while race oil is more expensive, it is not actually the right choice for the applicatio­n. A good way to know if you should run a race oil or a high-spec synthetic is this: if you use pump petrol, use a high-spec synthetic like Driven’s LS30; if you use race fuel, use a race oil.

How about zinc content — is there only one type ofZDDP( zinc dialkyld it hio phosphate )? Nope, there’s almost 50. There are three classes of ZDDP — primary, secondary, and aryl. Within those three, there’s both short chain and long chain, as well as high molecular weight and low molecular weight, so there is a wide variety in ZDDP chemistry. If you do the math, it works out to around 49 possible combinatio­ns, and that’s not even with mixing. You can get some ZDDPs that are mixes between two. So, I could mix a shortchain primary with a long-chain secondary to try to get a mixture. You can say, ‘I’ve got ZDDP’, but what type? Some are proven to be more cataly ticconvert­er -friendly and less so for anti-wear. Some are really good for anti-wear, and not so cat-friendly. Is there a specific type of ZDDP that we should be looking at for our type of cars — older, pushrodtyp­e stuff? Yes. Older pushrod-style engines have very high contact forces in the valvetrain, so the ZDDP activity requiremen­t is higher. You see, the ZDDP doesn’t know what the spring pressure is; it doesn’t care. It just knows contact load. So, if I have a four-valve engine that only has 80 pounds on the seat, but my contact area is super small, it could still be as high as a two-valve motor that has 140 pounds on the seat but has a much wider contact surface. Now, with the pushrod motor, you have more dynamic weight because of all of the valvetrain’s mass. That’s where the overhead-cam engines generally have a lot more leeway, because they don’t have the mass, so some of the inertia forces don’t do the weird things that pushrod engines do — the higher your rpm, they start doing funny things. The secondary ZDDP is the one that has the better anti-wear properties, so, any time you have a performanc­e engine or a classic flat-tappet engine, the secondary ZDDP is your better anti-wear. In the classic and performanc­e cars, they’re not so much worried about whether they’re going to get 75,000 or 125,000 miles out of a catalytic converter, so going with an oil loaded with secondary ZDDP like HR1 is a great option for outstandin­g wear protection. And that’s a really important point to make, because too many people have this fear that if they use a high ZDDP oil, their cats are going to go bad — that’s not gonna happen from the ZDDP. The ZDDP is never going to do that; the cat may not work as well, but it’s not just going to clog up. That only happens when you have, say, stuck rings and are using oil — like a quart every 100 miles. Some guys have cars that only see a trailer. They fire it up, roll it on a trailer, and go to a show, and it sees less than, say, three miles a year, and they only do one oil change — OK, the oil you bought at the parts store is probably OK. Yes, by now the valve springs are probably only a fraction of the spring rate they were initially, but if he doesn’t do anything different to that car, then it’s probably fine. The problem is when that guy jumps on the internet and says ZDDP is all rubbish and that he doesn’t have any problems, and the guy that actually drives his car gets a flat cam because he listens to bad advice.

Is there any way to tell what type of ZDDP you have in your oil, so that if you’re shopping, you can lean towards a more preferable type? Sometimes you can tell by oil analysis, but off the shelf — no. You can tell what’s not in it, though. Anything with an API SN grade has to use the new phosphorou­s retention ZDDP, which is a less active form of ZDDP. So, anything that’s an SN will not have the older, more aggressive type [of] ZDDP, and most of what you’re going to get off the shelf is SN.

Is there any guarantee that older grades, such as SG or SJ, will meet a particular ZDDP content? No, but typically if it has an SG or an SJ on it, then those oils — and the fact that they’re even displaying that rating — means that they’re probably buying a package that has been accepted as that. Those are obsolete standards, so you can’t go and create and

SOME OF THE OIL FLUSHES AVAILABLE DO REALLY WEIRD THINGS, AND YOU REALLY OUGHT TO BE THINKING ABOUT IT

test an oil of that standard and get approval — you can’t even run those engine tests. So, to maintain that, the additive supplier is selling the package they sold back then, and you can claim it. With those older oils, is there such thing as a shelf life? If you found an older package from 10 years ago, could it still be OK to use? The basic rule of thumb in the oil industry is that the manufactur­ers will typically stand behind the oil for at least 24 months from the date of manufactur­e. There should be zero issues within 24 months. The next 24 months after that, you should be OK as well. That gives you four years. Anything past that, you might want to shake it up really good, but it really depends on how you store it. There are certain components that do lose their potency over time, so that can potentiall­y be an issue.

What’s the deal with detergents being added to oils? Think about modern engines and emissions; piston design, for example. On old-school engines, your top ring land used to be fairly far down. You had all this crevice volume, and all this crevice volume doesn’t burn. The low speed pre-ignition issue with DI [direct injection] engines, what they were finding is that the crevice volume is where it actually initiates the mega-knock event. So, one of the piston manufactur­ers worked with one of the test labs, and actually patented a crown design where the crevice design is actually tapered — it’s not a 90-degree angle; it actually runs a really oddball radius. The idea is that you can actually get the flame front to travel all the way down the top ring. That way, there is no place for it to build up and then light up from. The point being, with the ring land way down, that was pushing emissions. And with low-quality fuel, oil would build up in the ring lands, ring lands would start to stick, and the engine would start to use oil, impacting emissions. To run tighter piston-to-wall clearances, you run a higher ring land. So, to keep the [top] ring land clean, they had to run more detergent in the oils. The other thing was the government pushing factories to get longer service intervals, because used oil is an environmen­tal hazard. They want less waste oil, so they push the OEMs to mandate longer service intervals, and they get credit for their emissions requiremen­ts — some of the things they say, like Porsche recommendi­ng 20,000km drain intervals. They pay a very high penalty, at least in the US, because of their fuel economy, but they actually get credits by other things.

So, government interventi­on has had a big impact on oil manufactur­ing? That’s the primary reason that motor oil is different today than how it was 10 years ago, than it was 20 years ago. Those 20 years of changes have all been driven by government interventi­ons, not because of anything the oil companies or OEMs felt like they needed to do differentl­y performanc­e- or protection-wise. But if you were in Los Angeles in 1994, compared to today, you’re definitely thankful for some of the things that have been done — you can actually see! They have made a difference there, but it has come at a cost. There is a trade-off, and as long as people are aware of what that cost is, then it’s all good. Take E85 — it’s not a bad fuel, but don’t think that it’s the miracle come from heaven with no strings attached. Everything that you do has some side effect, there’s some consequenc­e or trade-off, but, as long as you’re aware of that tradeoff, then you’re fine.

How does operating rpm affect viscosity choice? The higher the rpm of the engine, the less viscosity, which is counter-intuitive to most people’s thinking; ‘I’ve got a high rpm engine, I need a 10W-60’ — no, you don’t. Tighter tolerances in engines also require lighter viscosity. So, take your current BMW or Porsche motors, even the modern Ford Coyote V8, that has VVT [variable valve timing], and set them aside, because they’re a different beast altogether. What you’re doing with VVT is asking the oil to not just be a motor oil but also a hydraulic fluid. All those systems have one thing in common — they use oil as a hydraulic fluid to actuate, at some point, the VVT system. Whether it’s Honda’s VTEC or BMW’s VANOS, there are different methods, but they all use oil as the hydraulic force to activate the unit they have. So, in hydraulics, you have to have oil pressure, because it’s fluid force. Typically, high-horsepower race engines do not need a lot of oil pressure. A non-hydraulic all-out race motor doesn’t need too much oil pressure; it needs oil flow. High-volume oil pumps don’t make pressure, they increase pump volume. If you’re not careful, your high-volume oil pump will drain your oil pan dry and then you blow up your motor. How did that happen? You’ve got an engine that’s built to run eight gallons of oil per minute, and your pump runs 14 gallons per minute, so all the oil gets pumped out of the pan! Now, in a VVT engine with a hydraulica­lly operated valvetrain, pressure does matter, as it’s the fluid force that moves the part. Some of them use a spraying mechanism, something with a counterbal­ancing force, so you have to generate enough force on one side to overcome it. Thus, you have engines that call for a 10W-50 or a 0W-40, something with very wide splits in viscosity. The oil’s got to go through these very tight clearances, but they’re also typically aluminium-block engines, which means that they get hotter, and those clearances expand. So, when the engine gets hot and the person steps on the throttle, there must be enough viscosity to make this thing work.

How about synthetic bases? Is it true that you shouldn’t run a synthetic oil in a flat-tappet cam engine?

Nah, that’s crazy. Every Nascar engine out there uses flat tappets and all run synthetic oil. That’s one of those myths that came because, when they first started reducing the ZDDP in the oil, the first ones to have lower ZDDP were the synthetics, because they were the premium oils for the newest, latest, and greatest. So, there probably were some guys who looked at this new 10W-30 synthetic oil and thought it’d give them more power, dropped it in their old 289, and wiped the camshaft — because they went from a 1200ppm zinc oil that had lots of sulphur in it naturally, to one with zero sulphur in it, because it’s synthetic, and lower ZDDP. ‘Oh, it’s the oil’s fault’ — no, it wasn’t the synthetic oil that was bad; it was the chemistry that wasn’t right for the engine. Even if you had a mineral-base 10W-30, you wouldn’t be too keen to run that in an old Mustang, would you? Oh, I would totally put a 10W-30 — just not an off-the-shelf 10W-30 but a high-zinc one — in a Mustang. Because of where the pickup tube is relative to the oil pump, it’s a relatively long pickup tube, these Ford motors benefit — especially at cold start — from a lighter weight oil. It’s very easy, in Fords with a wet sump, to put in a really heavy oil, and the engine won’t get enough oil moving through it. One of our customers is a guy in the UK who is a Ford specialist, and he had a really highend Cobra — a real Cobra, not a kit car. They were running a dry-sump system, where they could obviously prime it really easily; well, FIA came out with a rule that the engine had to run an oiling system as per factory. They’d always run 20W-50 with the dry-sump system, went out to Donington early in the spring, it was a cool day, and they filled it up with 20W-50. So, they fired it up and went off, with 20W-50 in the wet-sump motor, and threw the rod bearings. They did it twice before they started questionin­g what was going on. We told them that, for the engine they’re running, they need to run a 5W-20. Well, they were sceptical but, by that point, he was two rebuilds in and had nothing to lose, so went with the 5W-20. He had to try something to fix it, so they put in our 5W-20 Joe Gibbs Driven XP1, went out, won the race and went all season without looking back. The higher the oil viscosity, the less flow you have upon start-up, and the more wear that occurs in the engine — 70 per cent of the wear that occurs in the engine occurs on start-up. As long as you don’t run an oil that’s too thin for the engine, then you’re good. The right viscosity for the clearances is the right choice.

It’s a common belief that synthetic-base oils cause roller lifters to slide on cam lobes — is this true? It’s basically the same variation of the flat-tappet deal — it’s not that it’s synthetic; you need the extreme-pressure additive. With flat tappets, you have this sliding action, where it’s trying to wipe away the oil, and you have that contact load. With a roller, you don’t have the sliding, but you have this rolling, this line contact, especially with needle roller bearings. So, if you don’t have enough viscosity to keep all those parts separated, and you don’t have the extreme-pressure additives, you will have a problem. When you see that sliding, that’s because it’s got so much load on itself that it’s trying to weld itself — it’s like a pothole; that initial little rippling is what causes it to slip and start hammering lifters and the valvetrain. Run those engines on a high-zinc synthetic oil, and they’ll run for a very long time without any roller-lifter issues.

 ??  ?? Some older engines have pistons with lower top ring lands. The flame front from the combustion event may not be able to clear this crevice between the piston crown and upper ring land, causing a build-up of oil, which could then cause the ring to...
Some older engines have pistons with lower top ring lands. The flame front from the combustion event may not be able to clear this crevice between the piston crown and upper ring land, causing a build-up of oil, which could then cause the ring to...
 ??  ?? A direct injection system sees the fuel injected straight into the combustion chamber. As there is no fuel to wash the intake valve, an efficient crankcase ventilatio­n system is of the utmost importance to eliminate the risk of contaminat­ion build-up,...
A direct injection system sees the fuel injected straight into the combustion chamber. As there is no fuel to wash the intake valve, an efficient crankcase ventilatio­n system is of the utmost importance to eliminate the risk of contaminat­ion build-up,...
 ??  ?? The valvetrain design inherent in modern overheadca­m configurat­ions (right) generally implies a lower valvetrain mass, when compared with traditiona­l overhead-valve assemblies (left). The rough rule of thumb to be applied here is that older-style...
The valvetrain design inherent in modern overheadca­m configurat­ions (right) generally implies a lower valvetrain mass, when compared with traditiona­l overhead-valve assemblies (left). The rough rule of thumb to be applied here is that older-style...

Newspapers in English

Newspapers from Australia