Reader's Digest Asia Pacific

BACK FROM THE DEAD

How the strange new science of ‘suspended animation’ will save lives

- RENE EBERSOLE

The new science of freezing may save your life.

One afternoon in February 2011, Kelly Dwyer strapped on snowshoes and set out to hike a beaver pond trail near her home in Hooksett, New Hampshire, US. Hours later, the 46-year-old teacher hadn’t returned home. Her husband, David, was worried. Grabbing his phone and a torch, he told their two daughters he was going to look for Mum. As he made his way towards the pond, he called out for Kelly. That’s when he heard the moans.

Running towards them, David phoned Laura, 14, and told her to call emergency services. His torch beam soon settled on Kelly, submerged up to her chest in a hole in the ice. As David clutched her from behind to keep her head above water, Kelly slumped into unconsciou­sness. By the time rescue crews arrived, her

IMPROVEMEN­TS IN TECHNOLOGY MEAN THAT THE ODDS OF COMING BACK FROM THE EDGE

ARE GETTING BETTER

body temperatur­e was around 20°C. Before she reached the ambulance, her heart stopped. The crews attempted CPR – a process doctors continued for three hours at a hospital nearby. They warmed her frigid body. Nothing. Even defibrilla­tion wouldn’t restart her heart. David assumed he’d lost her for good.

But Kelly’s life wasn’t over. A doctor rushed her to the nearby Catholic Medical Center, where a new team hooked her up to a cardiac bypass machine that more aggressive­ly warmed, filtered and oxygenated her blood and rapidly circulated it through her body. Finally Kelly’s temperatur­e crept back up. After she’d spent f ive hours medically dead, doctors turned off the machine and her heart began beating again.

Incredibly, Kelly Dwyer walked out of the hospital two weeks later with only minor nerve damage to her hands.

Bringing people back from the ‘dead’ is not science fiction any more. Typically, after just minutes without a heartbeat, brain cells start dying and an irreversib­le, lethal process is set in motion. But when a person becomes severely cold before their heart quits, their metabolism slows. The body requires so little oxygen that it can remain in a suspended state for hours without permanent cell damage.

Thanks to improvemen­ts in technology (like the cardiac bypass machine that saved Kelly’s life), the odds are getting better for coming back from the edge. They are so good, in fact, that a handful of scientists and medical experts are now looking for ways to suspend life in order to perform surgeries without the threat of a trauma patient bleeding to death, or to prevent tissue damage during the treatment of cardiac events.

The US Department of Defense is heavily involved. In 2010, it launched a US$ 34-million initiative called Biochronic­ity. Ninety per cent of war casualties result from bleeding out on the battlefiel­d.

“The question is, can we decrease the person’s demand for blood so, for a period of time, he actually doesn’t

need blood flowing,” explains Colonel Matthew Martin, a 49-year-old trauma surgeon whose research is funded through Biochronic­ity. The purpose would be making a wounded soldier able to survive longer “so that we can get somewhere to treat the injury,” says the active-duty surgeon.

DR MARK ROTH’S OFFICE at the vast Fred Hutchinson Cancer Research Center in Seattle, US, is crammed with boxes of newspaper clippings about people who came back from the ‘dead’. There is a skier in Norway, a toddler in Saskatchew­an, two fishermen who capsized in the Gulf of Alaska – all of whom had flatlined in the freezing cold.

“I’ve been a student of these cases for 20 years,” Dr Roth tells me. At 60, he is widely recognised as a pioneer in the pursuit of using suspended animation in trauma treatment.

Hunched over a microscope, he invited me to take a look at a petri dish bustling with tiny, hours-old zebra fish. “Because they’re transparen­t, you can see their hearts beating and the blood moving about the tail,” he says. “This is the core of our own animation – the heart and blood flow. We’re going to take away the oxygen and alter their animation.”

Roth began piping nitrogen into a transparen­t box containing the petri dish. “In time the whole system in there will become straight-up nitrogen, which will get to these creatures and turn them off,” he says. “In the morning, we’ll put them back into the room air, and they’ll reanimate.”

Then he prepped a similar experiment. Taking two petri dishes of nematodes at precisely the same stage of developmen­t, he placed one dish in his nitrogen box and left the other on a lab bench. His hypothesis: the gassed worms’ metabol ism should gradually slow until they’re essentiall­y suspended in time, while their fresh-air siblings should keep getting bigger. Because nematodes

grow quickly, his theory would be proved or disproved by tomorrow.

Up until the early 2000s Roth’s experiment­s were confined to tiny creatures. Then one night he was watching a television documentar­y featuring a cave in Mexico that caused cavers to pass out because of an invisible hydrogen-sulfide gas.

“If you breathe too much of it, you collapse – you appear dead,” says Roth. “But if you’re brought out from the cave, you can be reanimated without harm. I thought: ‘ Wow! I have to get some of this!’”

After exposing mice to 80 parts per million of that gas at room temperatur­e, he found he could induce a suspended state that could later be reversed by returning the mice to regular air, with no neurologic­al harm. For Roth, it was a breakthrou­gh. The medical community immediatel­y took notice. A $500,000 ‘genius grant’ from a philanthro­pic foundation followed soon after.

Roth has since identified four compounds (sulphur, bromine, iodine and selenium) that he calls ‘elemental reducing agents’, or ERAs. They exist naturally in small amounts in humans and can slow a body’s oxygen use.

Roth wants to develop an ERA as an injectable drug that can prevent tissue damage that can occur after doctors halt a heart attack. This happens when normal blood f low resumes; the sudden rush of oxygen can permanentl­y damage heart cells, leading to chronic heart disease (the leading cause of death in the world).

Roth’s research in pigs shows that if he injects an ERA before the blockage is removed, it’s possible to keep the heart muscle from being destroyed. Human trials on heart-attack patients are already underway, and Roth says ERAs could one day be used for a range of medical conditions, including organ and limb transplant­s.

DR SAM TISHERMAN hates the phrase ‘suspended animation’. As director of the Center for Critical Care and Trauma Education at the University of Maryland’s School of Medicine in Baltimore, US, he prefers ‘emergency preservati­on and resuscitat­ion (EPR)’. “We want to preserve the person long enough to stop the bleeding and resuscitat­e him.”

Unlike Roth’s method, Tisherman’s approach is to cool patients into a hypothermi­c state, essentiall­y inducing the same state that Kelly Dwyer was in. To do that, he replaces blood in the body with extremely cold saline solution, quickly reducing the patient’s core temperatur­e to a frigid 10 to 12°C. If it works, it could be a lifesaver.

Routine care for trauma victims with injuries such as gunshot wounds typically involves inserting a breathing tube, and then using intravenou­s catheters to replace fluids and blood while a surgeon attempts to repair the damage before the patient’s heart

fails. “It’s a race against time,” Tisherman says. “Only 5 per cent of people in cardiac arrest from trauma survive.”

Inducing a hypothermi­c state could buy surgeons as much as an hour to operate. Afterwards, they could resume blood flow and gradually rewarm the patient. Tisherman and his colleagues have spent more than two decades perfecting their procedure in animals. If human patients follow the success of the animal studies, their chances of survival could double.

Col. Matthew Martin, the army surgeon, was trying to achieve the same results as Tisherman – without the extensive equipment that would be impossible to bring to the front lines. That means using chemicals – not cold – to slow the body’s metabolism.

“The goal is to create ‘hip-pocket therapy’, ” he says. “A medic could carry a drug in his bag and whip out a syringe for a severely injured soldier, inject it and start the process of suspended animation, giving the soldier more time to get to a surgical facility.”

He and his colleagues have identified a series of enzymes known as PI 3-kinase, which helps regulate metabolism. After examining the effects of the drug on pigs, Martin’s early data suggests that administer­ing it at the moment of ischaemia – when blood flow to the heart becomes inadequate – can slow down the metabolism without harming the animal.

MEANWHILE, BACK AT Dr Roth’s lab in Seattle, he’s likewise hoping the answer to stalling time lies within a portable, injectable drug.

A day after putting his nematodes to sleep, Roth returned to his lab to check on their progress. As expected, the little worms that spent the night in the nitrogen chamber hadn’t grown but were easily brought back to life when exposed to fresh air. At the same time, the ones left out on the table had grown noticeably larger. Soon they would have babies of their own.

It’s a far cry from saving a human trauma patient. But witnessing those tiny worms ‘resurrecte­d’, I felt I’d just seen a glimpse of the future.

 ??  ??
 ??  ?? After falling through the ice while snowshoein­g, Kelly Dwyer was ‘medically dead’ for five hours before doctors got her heart beating again
After falling through the ice while snowshoein­g, Kelly Dwyer was ‘medically dead’ for five hours before doctors got her heart beating again
 ??  ??

Newspapers in English

Newspapers from Australia