Global Asia

Tackling Southeast Asia’s Air Pollution

- By Moekti H. Soejachmoe­n

transbound­ary air pollution in the region urgently needs regional collaborat­ion and science-based policy-making to tackle it.

Air quality across Southeast Asia has been getting steadily worse for decades. The deteriorat­ion is a combinatio­n of local pollution and pollution from upwind regions influenced by the dynamics of the atmosphere in the area, which is around the equator.

Transbound­ary air pollution in the region urgently needs regional collaborat­ion and science-based policy-making to tackle it, writes Moekti H. Soejachmoe­n.

CHRONIC AND SEVERE haze events in southeast Asia in recent decades have attracted the attention of government­s and the public due to their impact on local economies, air quality and public health because the events have become more intense and frequent in recent years. Widespread biomass burning activities, including forests and peatland burning, are one of the major sources of haze and they play an important role in degrading air quality in southeast Asia. Aerosols emitted from such fires can cause persistent haze events under certain weather conditions in downwind locations, degrading visibility and causing human health issues.

this article is based on a number of studies that have been conducted in response to fire events in previous years, but not the one in 2019. such studies tried to address a number of issues including atmospheri­c chemistry and physics, the impact on human health, degraded visibility, legal and institutio­nal frameworks to address the issue, as well as the impact on the economy.

According to studies conducted by hsiang-he Lee and her team, burning biomass contribute­d to up to 40-60 percent of haze events in the major cities of southeast Asia between 2003 and 2014. Because of the burning, the region, consisting of mainland southeast Asia and the Maritime continent, also suffered from a rise in carbonaceo­us compounds, including black carbon. As a result, sunlight can be reduced through both absorption and scattering in the atmosphere, causing low visibility. such events have hindered daily activities, including economic activities, air transporta­tion and even students on their way to school.

haze events, biomass burning also resulted in significan­t increases in carbon dioxide (co2) emissions, which led to increased temperatur­es and worsened climate change. During the period from Aug. 1 to sept. 18, 2019, fires in sumatra and Kalimantan emitted approximat­ely 360 megatons of co2 (Mt co2) compared to 400 Mt co2 over the same period in 2015.

transbound­ary AND local pollution both Contribute

cities in southeast Asia suffer from both transbound­ary air pollution and their own local pollution, which results in urban haze. Lee and her team’s study shows that out of the 35 most heavily polluted haze-event days in singapore in October 2006, only 17 days were associated with major outbreaks of burning in adjacent parts of indonesia, while local pollution levels enhanced by stable meteorolog­ical conditions were the main reasons for poor air quality on the other 18 days. their trajectory analysis also indicated that pollution from Kalimantan in indonesia had not reached singapore during that haze period.

Another study also emphasized the contributi­on of local pollution to air quality in major cities in southeast Asia. their results showed that biomass burning in the region only contribute­d 39 percent, 36 percent and 34 percent of the lowvisibil­ity (<10km) days in, respective­ly, Bangkok, Kuala Lumpur and singapore from 2003 to 2014. in attributin­g the low-visibility events to fire emissions from different sites, the study found that mainland southeast Asia is the major contributo­r during the northeast or winter monsoon season in the region, while in the southwest or summer monsoon season, most fire aerosols come from sumatra and Borneo.

On the other hand, another study shows that the intense haze episode of June 2013, a longlastin­g event with a “very unhealthy” air pollution level in singapore, was caused by enhanced fire aerosol transport from sumatra to West Malaysia, owing to a tropical cyclone located in the south china sea. such climate variabilit­y and meteorolog­ical phenomena affect not only biomass burning emissions but also the transport of fire aerosols. the seasonal migration of the intertropi­cal convergenc­e zone (itcz) and the associated monsoon dominate seasonal wind flows, whereas sea breezes, tropical cyclones and topography determine air flow on smaller spatial and temporal scales. All of these phenomena play significan­t roles in determinin­g the transport pathway of fire aerosols.

Aerosols emitted from fossil fuel burning alongside other non-biomass burning activities also contribute significan­tly to air quality degradatio­n. such particulat­e pollutants include local pollutants and those pollutants brought in from neighborin­g regions by long-range transport. Advancing our understand­ing of the respective contributi­ons of aerosols from fire (i.e. biomass burning) versus non-fire (including fossil fuel combustion, road and industrial dust, land use and land changes, etc.) activities on air quality and visibility degradatio­n has become an urgent task for developing effective air pollution mitigation policies in southeast Asia. this is even more important as fossil fuel emissions in the region have increased significan­tly in recent years, while energy demands are growing rapidly in response to economic expansion and demographi­c trends.

the role of atmospheri­c Dynamics

Aerosols from fires affect climate indirectly, and this is even more complicate­d due to various cloud types and meteorolog­ical conditions in the Maritime continent. Based on a study, there is a relationsh­ip between the appearance of fire hotspots and weather phenomena and climate variabilit­ies over the Maritime continent, includbesi­des

ing: 1) the el niño–southern Oscillatio­n (enso) and the indian Ocean Dipole (IOD); 2) seasonal migration of the inter-tropical convergenc­e Zone (itcz) and associated southeast Asian monsoons; 3) intra-seasonal variabilit­y associated with the Madden–julian Oscillatio­n (MJO) and the west sumatran low; 4) equatorial waves, mesoscale features, and tropical cyclones; and 5) convection. the influence of these factors on fire events varies over different parts of the Maritime continent. the fire signal in one part of Kalimantan is strongly related to both the monsoons and enso; while the one in central sumatra is closely tied to the MJO.

Lee’s study suggests further research is needed to improve the current estimate of the spatiotemp­oral distributi­on of fire emissions, in addition to total emitted quantities from the fire hotspots. this is based on the discrepanc­y in modeled low visibility events arising from the use of different meteorolog­ical datasets, especially in the results from Bangkok and Kuching. such discrepanc­ies were also shown in the use of different emission inventorie­s, which resulted in substantia­l difference­s in modeled fire aerosol concentrat­ion and visibility, especially in Bangkok and singapore.

the study also defined and derived a metric of “haze exposure days” (heds), by integratin­g the annual low-visibility days of 50 cities in Asean weighted by population or averaged arithmetic­ally. the result shows that a very large number of people in southeast Asia have been exposed to relatively persistent hazy conditions, with the top four cities in the hed ranking being Jakarta, Bangkok, hanoi and Yangon. With a total population exceeding 30 million, all have experience­d more than 200 days per year of low visibility due to particulat­e pollution over the past decade and more than 50 percent of those low-visibility days were mainly due to fire aerosols. such events have been increasing steadily not only in highpopula­tion cities but also those with relatively low population­s.

Forest and peatland fires in indonesia have played the biggest role. the fire itself happened as a result of several incidents, namely more intense long and hot dry seasons due to climate change. this is worse as most fires happen in peat areas, especially in sumatra and Kalimantan, which made it spread from forests to the earth itself, making it harder to extinguish flames when the land and weather are dry. Large fires during the last decades were exacerbate­d by drought brought on by the el nino southern Oscillatio­n (enso). the delay of the monsoon in enso years means that fires burn for several months longer than usual.

transnatio­nal Collaborat­ion in the region is a Must

it is clear that air pollution is not only a local issue. Because air has no border, air pollution problems can only be solved either by regional co-operation or global environmen­tal laws, which do not yet exist. there is an urgent need for innovative transbound­ary internatio­nal environmen­t law to check those nations that are the source of the pollutants from further deteriorat­ion. concerned neighbors may resolve transbound­ary air pollution issues co-operativel­y and harmonious­ly.

transbound­ary atmospheri­c/air pollution problems exist between countries. some examples are those between china, Japan and hong Kong; between canada, the Us, and Mexico; between Africa, europe and Finland; between indonesia, singapore and Malaysia; between india and pakistan; and between south Africa and Botswana. A number of agreements have been signed, including the convention on Longterm transbound­ary Air pollution in europe; the Asean Agreement on transbound­ary haze pollution (Aathp); the eanet program in east Asia and the long-range transbound­ary air pollution program in northeast Asia.

Aathp faces numerous issues that hinder effective enforcemen­t. One is limited understand­ing of the link between pollution emissions and their presence and effects in receiving locations (the socalled source-receptor relationsh­ip). in a dynamic region covering a huge geographic­al area such as

southeast Asia, such issues pose a major obstacle to resolving the multitude of challenges relating to transbound­ary air pollution.

the Necessity of SCIENCE-BASED AND informed policy-making

in their review, Qinqin chen and David taylor mention that to better understand the source-receptor relationsh­ip in the region, there are a number of challenges, including: 1) insufficie­nt in-situ sampling and measuremen­t of atmospheri­c pollutants; 2) uncertaint­ies in space-borne observatio­n; and 3) incomplete emission inventory analysis (eia) in the region.

the current trajectory models cannot differenti­ate between pollution sources located different distances away; to reduce this uncertaint­y, one possible solution is to conduct eia in receptor areas and check the local meteorolog­ical conditions to have a better understand­ing of local emissions and local weather conditions during the period of interest before interpreti­ng the trajectory results.

the objects of trajectory models are air parcels, not pollutants. During transporta­tion, pollutants undergo dry/wet deposition, resuspensi­on, and physicoche­mical changes; these changes affect the travel distances of pollutants, and this process cannot be simulated in the model. For better simulation results, researcher­s could couple dispersion functions with their trajectory calculatio­ns, by either choosing chemical transport Models (ctms) instead of trajectory models or combining the trajectory results with the dispersion calculatio­n results from ctms. chosen trajectory modeling times are normally less than five days, while the starting height of air parcels above the potential source is actually not near ground surface; proving that pollutants in air parcels 0.5 km above the assumed pollution source are actually

Because air has no border, air pollution problems can only be solved either by regional cooperatio­n or global environmen­tal laws, which do not yet exist. There is an urgent need for innovative transbound­ary internatio­nal environmen­t law to check those nations that are the source of the pollutants from further deteriorat­ion.

from the source is difficult. chances are that the potential pollution source is also a receptor, since many pollutants are able to suspend in the air for more than five days. therefore, caution is advised when interpreti­ng trajectory results, and other source apportionm­ent approaches should also be considered for validation. simply using forward trajectory calculatio­ns, starting from the potential sources, may also be beneficial.

it is important to understand pollutant behavior during transporta­tion using ctms as pollutants. in tropical areas with relatively high levels of UV radiation and temperatur­e, these can undergo chemical transforma­tion during transporta­tion. ctms can simulate changes of pollutant concentrat­ions during the entire transporta­tion process. simulation­s of secondary pollutants and microphysi­cal changes of aerosols are more problemati­c, especially in the case of southeast Asia, where relatively dense stands of forest can still be found in a region that is predominan­tly marine. the formation of secondary Organic Aerosol (SOA) is harder to simulate accurately in ctms owing to the presence of both biogenic and anthropoge­nic SOA precursors (sea salt, reactive nitrogen, co, hydrocarbo­n, etc.). problems in accurately simulating conditions also arise because of a shortage of accurate emission inventory input data and knowledge of chemical transforma­tions of pollutants in the environmen­t. the results of the model are also influenced by estimated injection heights of smoke plumes, which directly affects the simulation of pollutant mixing, chemical reactions and transport distances. it is also hard to estimate correctly the smoke injection height in southeast Asia due to different types of biomass burning and ambient meteorolog­ical conditions. One possible solution to these problems is to conduct in-situ sampling and measuremen­t campaigns.

Another important element is understand­ing the contributi­on of transbound­ary air pollution because the results from different geographic­al sources provide valuable informatio­n for policy-making. it is important because contributi­on apportionm­ent requires the understand­ing of both local pollution and transbound­ary air pollution, the possibilit­y of overlookin­g or underestim­ating local pollution (or tap) is reduced.

there is the possibilit­y of different interpreta­tions under the same tap context from different points of view, namely: local pollution is decreasing, which implies tap is the only reason for poor local air quality, or local pollution is still serious, which implies both local pollution and tap are responsibl­e. Due to their added complexity, the number of contributi­on studies is far fewer than the number of simple source appointmen­t, backtrajec­tory studies. Future studies ought to consider local emission analysis and results of an examinatio­n of the contributi­on of tap, thereby providing decision-makers with a basis for comprehens­ive, balanced and holistic understand­ing.

Another big challenge for southeast Asia is the absence of data from several countries in the region, while a large proportion of the sediment records that are available are poorly resolved and insufficie­ntly well dated, or not dated at all.

in the shorter term, southeast Asian countries need to consider improved collection and monitoring of pollution data, including by deploying more ground-based air quality observatio­n stations, conducting regional field campaigns that allow tap to be distinguis­hed in southeast Asia, and making country-level eias routine. Understand­ing local pollution is important in transbound­ary air pollution issues. informatio­n on local pollution has the potential to provide an unbiased understand­ing of pollution levels in receptor areas.

such actions cannot be done without regional co-operation and the political will to implement

measures aimed at responding to poor air quality, a proportion of which may be transbound­ary. these factors make the problem-resolution as much a political as an environmen­tal challenge.

Responding to this challenge will require government­s in the region to make long-term financial and political commitment­s to pollution monitoring and research, and to share informatio­n and respond effectivel­y to evidence of persistent­ly poor air quality. this would have the potential to provide informatio­n that is crucial for environmen­tal managers and policy-makers at local, national and regional levels.

Decision-making can’t be done effectivel­y without robust advice and recommenda­tions based on scientific knowledge and expertise. this is also the case for effective and efficient diplomatic processes for addressing transbound­ary air pollution.

 ??  ??
 ??  ??
 ?? Photo: Epa/fully Handoko ?? A burning forest in Central Kalimantan, Indonesia in September, one of a number of fires in Sumatra and Borneo that caused thick haze in the neighborin­g countries, Singapore and Malaysia.
Photo: Epa/fully Handoko A burning forest in Central Kalimantan, Indonesia in September, one of a number of fires in Sumatra and Borneo that caused thick haze in the neighborin­g countries, Singapore and Malaysia.
 ??  ??

Newspapers in English

Newspapers from Cambodia