Cape Breton Post

Magnitude explained: How astronomer­s determine the brightness of stars

- GLENN ROBERTS glennkrobe­rts@gmail.com @chronicleh­erald

Astronomer­s use two different types of stellar magnitudes to measure the brightness of a star or other celestial bodies: apparent magnitude and absolute magnitude.

Although it is generally termed "stellar magnitude," the same principles of magnitude apply when measuring the brightness of other celestial objects, such as the planets, comets, galaxies, the moon and the sun. Apparent magnitude (sometimes referred to as "visual magnitude") relates only to how bright a particular star appears visually to an observer on Earth.

Absolute magnitude, meanwhile, is the intrinsic brightness a celestial object would exhibit if it were viewed from a distance of 32.6 light-years (approximat­ely 310 trillion kilometres). Most amateur astronomer­s are more interested in apparent magnitude than in absolute magnitude.

It was the Greek astronomer Hipparchus who, in the second century B.C., created the magnitude scale. He labelled the brightest stars he could see in the night sky as first-magnitude (+1.0) stars. Stars dimmer than +1.0 magnitude were labelled second-magnitude (+2.0), stars dimmer than +2.0 magnitude were labelled third-magnitude (+3.0) stars, and so forth, down to sixth-magnitude (+6.0) stars, the dimmest stars that he could see. This is primarily the stellar magnitude scale that modern-day astronomer­s still use, though with a slight, but significan­t, change.

In 1850, English astronomer Norman Robert Pogson establishe­d a new system of ascribing magnitudes to celestial objects. He determined that a difference of five magnitudes correspond­ed to a brightness factor of one hundredfol­d. Simply put, a first-magnitude (+1.0) star is 100 times brighter than a sixth-magnitude (+6.0) star. Since the fifth root of 100 is approximat­ely 2.512, a difference of one magnitude correspond­s to a brightness or dimness factor of about 2.512, meaning that a +6.0 magnitude star is 2.512 times dimmer than a +5.0 magnitude star.

Pogson was eventually forced to add negative magnitude values in order to accommodat­e the vast range of celestial object magnitudes. As the magnitude scale currently stands, brighter objects are assigned negative numbers (the higher the negative number, the brighter the object), and fainter objects are assigned positive numbers (the higher the positive number, the fainter the object). For example, the faintest star that can be seen (under a clear sky, away from city lights) with the naked eye by the average human is usually around +6.0 magnitude, while the brightest star Sirius in Canis Major has a magnitude of -1.5, the full moon approximat­ely -11, and the sun a whopping -26.7 magnitude.

While this manner of ranking magnitudes appears "backward" to most people, it does become easier the more one uses it.

CAN YOU SEE IT?

Here is a small test for you. On a clear spring or summer night, go outside and see if you can spot, with just your naked eye (remember to give yourself about 15-20 minutes for your eyes to dark-adapt), the following stars in the northern sky (star/constellat­ion and magnitude):

• Mizar/Ursa Major - +2.27 • Talitha/Ursa Major - +3.14 • Alcor/Ursa Major - +4.01 • Chalawan/Ursa Major +5.05

• Polaris/Ursa Minor - +2.02 • Pherkad/Ursa Minor - +3.05 • Yildun/Ursa Minor - +4.36. You may need to consult a star atlas or go online to find some of these stars. Ursa Major and Minor are visible all night long, every night of the year. Let me know how you make out.

THIS WEEK'S SKY

Mercury, heading towards superior solar conjunctio­n (passes behind the sun as viewed from Earth) on April 18, is currently too close to the sun to be seen. Venus is likewise too close to the sun to be observed.

Mars (magnitude +1.4, can be found in Taurus - the Bull) becomes visible in the evening sky about 43 degrees above the western horizon by 8:40 p.m., before dropping to the horizon and setting by 1:15 a.m. Look for the waxing, crescent moon near Mars on the evening of April 16. The Red Planet will form a triangle with two other celestial red objects in the mid-evening, western sky: Betelgeuse, in the constellat­ion Orion — the Hunter, to its lower left, and Aldebaran, in the constellat­ion Taurus — the Bull, to its lower right.

Saturn (magnitude +0.7, seen in the constellat­ion Capricornu­s — the Sea Goat) rises in the southeast around 4:10 a.m., reaching 14 degrees above the horizon before fading with the approachin­g dawn by about 5:50 a.m.

Jupiter (mag. -2.1, in the Capricornu­s constellat­ion) rises in the east-southeast shortly after Saturn, around 4:40 a.m., reaching a height of 13 degrees above the horizon before fading from view by about 6:10 a.m.

Until next week, clear skies.

EVENTS

• April 14 - Moon at apogee (furthest from Earth)

• April 16 - crescent Moon near Mars, in the western sky, mid-evening

Dan is in his fourth season as the play-by-play voice of the Montreal Canadiens on TSN 690 radio. He grew up in Trenton.

 ?? 123RF ?? The Red Planet will form a triangle with two other celestial red objects in the mid-evening, western sky this week: Betelgeuse, in the constellat­ion Orion — the Hunter, to its lower left, and Aldebaran, in the constellat­ion Taurus — the Bull, to its lower right.
123RF The Red Planet will form a triangle with two other celestial red objects in the mid-evening, western sky this week: Betelgeuse, in the constellat­ion Orion — the Hunter, to its lower left, and Aldebaran, in the constellat­ion Taurus — the Bull, to its lower right.
 ??  ??

Newspapers in English

Newspapers from Canada