Edmonton Journal

STRIKING BACK

Scientists create tool to forecast where East Africa’s devastatin­g desert locusts will land next

- MADDIE STONE

As a historic upsurge of desert locusts ravages East Africa, scientists are using a sophistica­ted air pollution model to anticipate where the destructiv­e pests are being blown by the wind — and where they will strike next.

Following extreme rainfall events that created favourable breeding conditions over a span of 18 months, swarms of desert locusts from the Arabian Peninsula began rampaging across East Africa in early 2020, devouring crops and vegetation wherever they landed. By February, the crisis had reached historic proportion­s, with 10 countries in the Greater Horn of Africa and Yemen experienci­ng infestatio­ns.

By the second half of the year, more than 42 million people in those countries could face “severe acute food insecurity,” according to the UN Food and Agricultur­e Organizati­on (FAO).

With heavy rainfall in March and April bringing ideal conditions for an additional wave of locust breeding, authoritie­s are desperate for any informatio­n that can help them prepare for coming onslaughts.

Now, scientists at the National Oceanic and Atmospheri­c Administra­tion have teamed up with Keith Cressman, the senior locust forecastin­g officer at the FAO, to develop a web app that can be used to forecast where the wind will blow locusts after they take flight. The app is powered using an atmospheri­c model called HYSPLIT.

Cressman is already using the app to inform at-risk countries about locust threats, in addition to integratin­g the model’s findings into the FAO’S locust updates.

The app is a novel use of HYSPLIT, which scientists typically use to understand how pollution particles — whether soot from a power plant or ash from a volcanic eruption — spread and disperse in the atmosphere. To determine where pollution came from, the model can be run backward using data from a weather reconstruc­tion technique called reanalysis.

In principle, HYSPLIT can be used to track anything that gets transporte­d through the air, including locusts, which are “passive flyers,” according to Cressman.

Several years ago, Cressman started using HYSPLIT to predict where locust swarms were moving based on field observatio­ns. But as East Africa’s locust crisis intensifie­d last winter, Cressman realized he could use the model far more effectivel­y if it was tweaked to account for certain idiosyncra­tic aspects of locust behaviour.

Locusts “don’t fly 24 hours a day like a particle,” Cressman said. “They take off in the morning after a certain time and land just before sunset at a certain time. And then they rest and they go again.”

In February, Cressman reached out to NOAA’S Air Resources Laboratory in College Park, Maryland, to see whether there was a way to easily integrate this daily cycle into his model runs. NOAA agreed to help, and after a few weeks of “very intensive, long discussion­s,” the lab rolled out an initial version of a web app in March that could model dozens of swarms at a time and predict their location at five-minute intervals, up to seven days in advance.

The app allows Cressman to predict where swarms will land if they’re flying at different altitudes, where they’ll be subject to different wind speeds and sometimes different wind directions. Cressman can also use the model to work out where a recently spotted swarm probably originated.

“So often we will get out-of-theblue reports of swarms landing on the coast of the Red Sea,” he said. “The concern of the recipient country is how many more swarms are we going to get and where are they coming from.”

With Cressman’s feedback, NOAA is continuing to improve the app. The Air Resources Laboratory would like to add a feature to account for the rare instances when locust swarms take non-stop, multiday journeys across oceans, for instance, leapfroggi­ng across the Indian Ocean from Somalia to Pakistan.

Mark Cohen of the Air Resources Laboratory says his team would also like the model to account for other linkages between the weather and locust biology, like the fact the insects don’t fly when it’s raining.

While Cressman is feeding the model field observatio­ns, in principle it could also integrate weather radar data, which can provide additional informatio­n on the size of a swarm and the altitude at which it’s flying.

Ryan Neely III, an atmospheri­c scientist at the University of Leeds who isn’t involved with the FAO’S locust forecastin­g efforts, said it would be “amazing” to put radar snapshots of locust swarms into a model like this, while adding radar data can be difficult to access in East Africa.

The locust tracking tool’s rollout comes at a critical time. By the end of June, a new generation of locusts will have hatched and matured into “hungry teenagers” in northern Kenya and southern Ethiopia, Cressman said.

That generation will start taking flight in search of food around the same time many East African farmers are harvesting their spring crops. Being able to anticipate where a swarm will strike next is key to helping local authoritie­s conduct pesticide treatments that prevent crop losses.

 ?? TONY KARUMBA/AFP VIA GETTY IMAGES ?? Invading locusts spring into flight from ground vegetation as young girls run to their cattle near the village of Larisoro in Kenya.
TONY KARUMBA/AFP VIA GETTY IMAGES Invading locusts spring into flight from ground vegetation as young girls run to their cattle near the village of Larisoro in Kenya.
 ?? SUMY SADURNI/AFP VIA GETTY IMAGES ?? Swarms of locusts are destroying crops in East Africa after 18 months of ideal breeding conditions, leading locust experts to team up with atmospheri­c scientists to create an app designed to predict where the swarms will strike next based on wind patterns and other atmospheri­c conditions.
SUMY SADURNI/AFP VIA GETTY IMAGES Swarms of locusts are destroying crops in East Africa after 18 months of ideal breeding conditions, leading locust experts to team up with atmospheri­c scientists to create an app designed to predict where the swarms will strike next based on wind patterns and other atmospheri­c conditions.

Newspapers in English

Newspapers from Canada