Le Devoir

Le monde scientifiq­ue uni pour décortique­r la spectacula­ire fusion de deux étoiles à neutrons

- PAULINE GRAVEL

Une grande première a eu lieu le 17 août dernier alors que près d’une centaine d’équipes d’astronomes à travers le monde ont capté divers signaux émanant de la collision de deux étoiles à neutrons. L’enregistre­ment d’une rafale d’ondes gravitatio­nnelles, d’un sursaut de rayons gamma, d’ondes lumineuses visibles, de rayons X et d’ondes radio, tous résultant de ce même événement astronomiq­ue extraordin­aire, a permis de confirmer les modèles théoriques décrivant la collision entre deux étoiles à neutrons. Il a aussi permis de prouver que les éléments plus lourds que le fer, tels que l’or, l’argent et le platine, présents dans l’Univers et à la surface de la Terre proviennen­t de la fusion de deux étoiles à neutrons. Selon les astronomes, cet ensemble d’observatio­ns marque

l’avènement d’une nouvelle ère, celle de l’astronomie dite «multimessa­ger» puisqu’elle inclut désormais la récolte de signaux de diverses natures mais associés à un même événement astronomiq­ue.

Tout a donc commencé le 17 août dernier à 8h41 alors qu’une rafale d’ondes gravitatio­nnelles est détectée par les deux détecteurs d’ondes gravitatio­nnelles LIGO (Laser Interferom­eter Gravitatio­nal-Wave Observator­y) situés aux États-Unis (l’un à Hanford, dans l’État de Washington, et l’autre à Livingston, en Louisiane) et par le détecteur européen Virgo se trouvant à Pise, en Italie. Le signal enregistré est toutefois différent de celui des détections précédente­s — qui résultaien­t de la collision de deux trous noirs — puisqu’il se poursuit pendant une centaine de secondes contrairem­ent à une fraction de seconde antérieure­ment. Ce signal dont la fréquence augmente au cours du temps permet de déduire qu’il s’agit de deux étoiles à neutrons ayant des masses comprises entre 1,1 et 1,6 fois celle du soleil qui tournent l’une autour de l’autre. «À mesure que les deux étoiles s’approchent l’une de l’autre, elles accélèrent, et les ondes qu’elles génèrent deviennent de plus en plus grosses et déforment de plus en plus l’espace-temps. Nous avons donc plus de chances de les voir au tout dernier moment avant qu’elles n’entrent en collision et fusionnent», explique l’astrophysi­cienne Daryl Haggard de l’Université McGill qui a participé à la détection de rayons X reliés à cet événement.

À peine deux secondes après la détection des ondes gravitatio­nnelles, le télescope spatial Fermi de la NASA détectait pour sa part un sursaut de rayons gamma court en provenance de la même portion du ciel. La détection d’un tel rayonnemen­t est relativeme­nt courante, mais cette fois, on comprend rapidement qu’elle est reliée à la collision des deux étoiles à neutrons dont on vient de détecter les ondes gravitatio­nnelles. La fusion des deux étoiles vient en effet de provoquer une violente explosion qui émet un bouquet de rayons gamma.

L’analyse des données obtenues par les trois détecteurs d’ondes gravitatio­nnelles a ensuite permis de localiser — par triangulat­ion — avec une précision sans précédent la source des ondes gravitatio­nnelles, soit deux étoiles à neutrons situées à environ 130 millions d’annéeslumi­ère de la Terre. La localisati­on est alors transmise aux équipes responsabl­es de près de 70 télescopes en tout genre à travers le monde afin qu’ils pointent leurs instrument­s dans cette direction précise.

Ainsi, 12 heures plus tard, plusieurs télescopes optiques annoncent avoir repéré un point lumineux dans la galaxie NGC 4993 située dans

cette direction particuliè­re. Ce signal optique évolue très rapidement, passant d’un bleu intense au rouge avant de disparaîtr­e à peine une douzaine de jours plus tard. « Lors de la collision de deux étoiles à neutrons, en plus du sursaut gamma, de la matière très riche en neutrons est éjectée. C’est la lumière de cette matière chaude qui est émise dans toutes les directions et que nous voyons. Les astrophysi­ciens appellent ce phénomène, qui était prédit par la théorie, une kilonova », précise Benoît Mours, directeur de recherche au Centre national de la recherche scientifiq­ue (CNRS) en France lors d’une conférence de presse à Paris.

La kilonova se caractéris­e par un processus de «captures rapides de neutrons qui va faire grossir les noyaux et ainsi produire des éléments très lourds, comme le platine, l’or ou l’uranium. C’est par ce processus que, vraisembla­blement, les noyaux les plus lourds dans l’Univers sont produits », ajoute Frédéric Daigne, professeur à l’Université Pierre et Marie Curie à Paris.

«Au cours des millions d’années qui suivent une fusion d’étoiles à neutrons, ces éléments lourds se combinent à d’autres matériaux pour former des étoiles et des planètes. C’est par un phénomène similaire que de tels éléments se sont retrouvés sur la Terre », explique Edo Berger, professeur d’astronomie à l’Université Harvard, lors d’une conéfence de presse à Washington.

Dix jours après la détection des ondes gravitatio­nnelles, les télescopes sensibles aux rayons X observaien­t un jet de particules chargées se déplaçant à très grande vitesse en provenance de la galaxie NGC 4993. «Ce jet n’était pas dirigé directemen­t vers la Terre comme dans nos observatio­ns passées, mais était un peu décalé, ce qui permet d’obtenir plus d’informatio­ns. En observant le jet de profil, on pourra déterminer la distance qu’il parcourra, voir comment il interagit avec son environnem­ent, déduire sa vitesse et son accélérati­on », souligne Daryl Haggard, qui a étudié ce jet de particules à l’aide du télescope spatial Chandra de la Nasa.

Ce qui est survenu le 17 août et les jours suivants est une première à plus d’un titre puisqu’on a observé pour la première fois les ondes gravitatio­nnelles émises lors de la fusion de deux étoiles à neutrons, le sursaut gamma qui survient lors d’une telle fusion, la lumière émise par les éléments lourds qui sont synthétisé­s et éjectés lors d’un tel événement et le jet de particules chargées qui fuse au même moment. «Ces différents phénomènes avaient été prédits par des modèles théoriques, mais c’est la première fois qu’ils sont observés en associatio­n avec un même événement astronomiq­ue. Nous avons maintenant la confirmati­on de la théorie », résume Mme Haggard.

Benoît Mours ajoute aussi que, « après un voyage de 130 millions d’années, le fait que les deux signaux [celui des ondes gravitatio­nnelles et celui du sursaut gamma] sont arrivés avec moins de deux secondes d’écart est une éclatante vérificati­on de la prédiction d’Albert Einstein qui disait que les ondes gravitatio­nnelles se propagent à la vitesse de la lumière ».

Toutes ces observatio­ns extraordin­aires font l’objet d’une dizaine d’articles scientifiq­ues qui sont publiés dans les revues Nature, Nature Astronomy et The Astrophysi­cal Journal Letters.

 ?? AGENCE FRANCE-PRESSE ?? Une photograph­ie de la galaxie NGC 4993 prise à l’aide d’un téléscope au Chili.
AGENCE FRANCE-PRESSE Une photograph­ie de la galaxie NGC 4993 prise à l’aide d’un téléscope au Chili.

Newspapers in French

Newspapers from Canada