Vancouver Sun

THE WOMAN WHO UNLEASHED THE GENE GENIE

REVOLUTION­ARY GENE-EDITING TECHNIQUE GAVE JENNIFER DOUDNA NIGHTMARES ABOUT HITLER

- HARRY DE QUETTEVILL­E

Have you heard the news about sickle cell anemia and beta thalassemi­a, the devastatin­g diseases that prevent red blood cells carrying as much oxygen as they should? A new experiment­al therapy seems to have reversed the gene errors responsibl­e in two patients.

“Apparently, both patients have been cured,” says Jennifer Doudna. “That’s an extraordin­ary thing. Here are diseases of the blood that cause terrible distress and for which there’s currently very little that can be done.”

Doudna is not responsibl­e for the new therapy. At least not directly. Rather, she is responsibl­e for something with greater implicatio­ns — the gene-editing technique, known as Crispr-Cas9, which permitted the correction in the first place.

Crispr’s applicatio­ns are not limited to sickle cell. Indeed, its applicatio­ns seem barely limited at all, given that it can precisely slice out parts of our DNA and insert customized replacemen­ts in their stead. If DNA is the book of life, written into all our cells, Crispr is its word processor, making it one of the most significan­t, yet least-known, scientific advances of the decade.

“It’s easy to use,” says Doudna, 55, who is a professor in the Department of Molecular and Cell Biology at the University of California, Berkeley. So easy in fact, that scientists can now order Crispr molecules designed to target any part of human DNA as easily as ordering a take-away pizza.

“They can just type a gene sequence into their phone and program the Crispr molecules to manipulate DNA in ways that previously would have been impossible,” says Doudna. “It has been truly transforma­tive.”

In sickle cell, the fault lies with the HBB gene which, fundamenta­lly, is responsibl­e for the production of hemoglobin, the oxygen-carrying molecule in red blood cells.

But HBB is just one of more than 1,000 genes on chromosome 11. And chromosome 11 is just one of the 23 pairs of chromosome­s that comprise our DNA. In all, humans are estimated to have between 20,000?25,000 genes. Any can be edited with Crispr.

Take the DEC2 gene. It influences sleep. And one mutation of the genetic code in DEC2 allows people to thrive, even with very little sleep. You know those annoying people who seem to get by on just a few hours, and to whom we ascribe qualities of hard work and virtue — it turns out they may just have a genetic twist which, with a little editing, we may one day all be able to order for ourselves, or our children.

How about pain? The SCN9A gene contribute­s to our sensations of it. In Pakistan, a boy with a mutation of SCN9A could not feel pain and earned a living as a street performer, sticking knives through his arm. He died aged 14, after he took his act too far and jumped off a building. But now mice whose DNA has been edited to emulate that mutation also feel no pain. People may not be far behind or, according to one dystopian scenario, battalions of super-soldiers impervious to the agonies that afflict the rest of us.

Alongside the excitement of curing fatal diseases, then, Doudna also feels the wariness of one who has unleashed a dramatic new power.

“You can’t turn back the clock and put the genie back in the bottle,” she says, the gravity of her subject matter contrastin­g with her sunny, upbeat tone. “That’s just a reality. You know, you can’t undiscover things that you have discovered.”

If that seems a self-serving attitude, it does not mean she has been free from agonies of her own since 2012, when she published the pioneering paper (with Emmanuelle Charpentie­r, usually credited as Crispr’s co-inventor, and others) that ushered in the Crispr era.

In Human Nature, a new film that explores Crispr’s extraordin­ary potential, Doudna even tells of panicked visions of the Third Reich. “I ended up having several dreams that were very intense ... where I walked into a room, and a colleague said: ‘I want to introduce you to someone, they want to know about Crispr.’ And I realized with horror that it was Adolf Hitler. And he leaned over and said: ‘So, tell me all about how it works.’ I remember waking up from that dream, and I was shaking. And I thought: ‘Oh, my gosh. What have I done?’ ”

Her eugenics nightmare has already become a reality. Almost exactly a year ago, at a conference in Hong Kong, a Chinese scientist, He Jiankui, stood up and announced that he had created the first gene-edited human babies, their DNA altered with the aim of conferring immunity to HIV.

He had crossed not so much a line in the sand as a chasm. Not only were the implicatio­ns of the changes he had made impossible to know fully — given genes’ complex interactio­ns with each other and with the environmen­t — but they would also be passed on to future generation­s. Lulu and Nana, as the twin girls he created are known, will pass on their tweaked DNA, for good or ill, to their own children, with the possibilit­y that problems crop up in the second, third or fourth generation.

“What was so horrifying was to see what a disaster the whole effort has been, both from a scientific and technical point of view, as well as from an ethical perspectiv­e,” says Doudna. “The detailed (gene) changes that were made have never been seen in humans and never even tested in animals. So there’s no way to know if those changes are safe or defective. That is a horrifying thing to think about, you know, it reminds you of experiment­s on humans in the past.”

THERE’S NO WAY TO KNOW IF THOSE (GENE) CHANGES ARE SAFE OR DEFECTIVE.

 ?? BRIAN ACH / GETTY IMAGES FOR WIRED ?? Jennifer Doudna, a professor at the University of California, Berkeley, discovered, to her horror, the gene-editing technique known as Crispr-Cas9, which can slice out parts of our DNA and insert customized replacemen­ts.
BRIAN ACH / GETTY IMAGES FOR WIRED Jennifer Doudna, a professor at the University of California, Berkeley, discovered, to her horror, the gene-editing technique known as Crispr-Cas9, which can slice out parts of our DNA and insert customized replacemen­ts.

Newspapers in English

Newspapers from Canada