参考文献

ACTA Scientiarum Naturalium Universitatis Pekinensis - - Contents -

[1] Agirre E, De Lacalle O L, Fellbaum C, et al. Semeval2010 task 17: all-words word sense disambiguation on a specific domain // Proceedings of the Workshop on Semantic Evaluations of the Association for Computational Linguistics. Singapore, 2009: 123–128 [2] Koeling R, Mccarthy D, Carroll J. Domain-specific sense distributions and predominant sense acquisition // Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing of the Association for Computational Linguistics. Vancouver, 2005: 419–426 [3] Kulkarni A, Khapra M M, Sohoney S, et al. CFILT: resource conscious approaches for all-words domain specific WSD // Proceedings of the 5th International Workshop on Semantic Evaluation of the Association for Computational Linguistics. Uppsala, 2010: 421– 426 [4] Lesk M. Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone // Proceedings of the 5th ACM Annual International Conference on Systems Documentation. New York, 1986: 24–26 [5] Banerjee S, Pedersen T. An adapted Lesk algorithm for word sense disambiguation using Wordnet // International Conference on Intelligent Text Processing and Computational Linguistics. Mexico, 2002: 136–145 [6] Basile P, Caputo A, Semeraro G. An enhanced lesk word sense disambiguation algorithm through a distributional semantic model // COLING. Dublin, 2014: 1591–1600 [7] Agirre E, De Lacalle O L, Soroa A, et al. Knowledgebased WSD and specific domains: performing better than generic supervised WSD // IJCAI. Pasadena, 2009: 1501–1506 [8] Dwivedi S K, Rastogi P. Critical analysis of WSD algorithms // Proceedings of the ACM International Conference on Advances in Computing, Communication and Control. Beirut, 2009: 62–67 [9] Lee Y K, Ng H T, Chia T K. Supervised word sense disambiguation with support vector machines and multiple knowledge sources // Senseval-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text. Barcelona, 2004: 137–140 [10] Zhong Zhi, Ng H T. It makes sense: a wide-coverage word sense disambiguation system for free text // Proceedings of the ACL 2010 System Demonstrations. Uppsala, 2010: 78–83 [11] Khapra M M, Shah S, Kedia P, et al. Domain-specific word sense disambiguation combining corpus based and wordnet based parameters // 5th International Conference on Global Wordnet (GWC2010). Mumbai, 2010: 19 [12] Weeber M, Mork J G, Aronson A R. Developing a test collection for biomedical word sense disambiguation // Proceedings of the AMIA Symposium of the American Medical Informatics Association. Washington DC, 2001: 746750 [13] Magnini B, Strapparava C, Pezzulo G, et al. The role of domain information in word sense disambiguation. Natural Language Engineering, 2002, 8(4): 359–373 [14] Mikolov T, Chen Kai, Corrado G, et al. Efficient estimation of word representations in vector space // ICLR. Scottsdale, 2013: 112 [15] Yuan Dayu, Doherty R, Richardson J, et al. Word sense disambiguation with neural language models [EB/OL]. (20161105) [20161201]. https://arxiv.org/ abs/1603.07012 [16] Chen Xinxiong, Liu Zhiyuan, Sun Maosong. A unified model for word sense representation and disambiguation // EMNLP. Doha, 2014: 1025–1035 [17] Miller G A. Wordnet: a lexical database for English. Communications of the ACM, 1995, 38(11): 39–41 [18] Pedersen T, Patwardhan S, Michelizzi J. Wordnet:: similarity: measuring the relatedness of concepts // HLT-NAACL. Boston, 2004: 38–41 [19] Varelas G, Voutsakis E, Raftopoulou P, et al. Semantic similarity methods in Wordnet and their application to information retrieval on the web // Proceedings of the 7th annual ACM international workshop on Web information and data management. Bremen, 2005: 10–16 [20] Bird S, Klein E, Loper E. Natural language processing with Python. Sebastopol: O’reilly Media, 2009 [21] Balamurali A R, Joshi A, Bhattacharyya P. Robust sense-based sentiment classification // Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis of the Association for Computational Linguistics. Portland, 2011: 132–138 [22] Rose T, Stevenson M, Whitehead M. The Reuters corpus Volume 1-from yesterday’s news to tomorrow’s language resources // LREC. Las Palmas, 2002: 827– 832 [23] Mccarthy D, Koeling R, Weeds J, et al. Unsupervised acquisition of predominant word senses. Computational Linguistics, 2007, 33(4): 553–590

Newspapers in Chinese (Simplified)

Newspapers from China

© PressReader. All rights reserved.