ACTA Scientiarum Naturalium Universitatis Pekinensis

图 7硅藻物种与环境因子­的相关性 Heatmap 图和聚类树分析

Fig. 7 Correlatio­n heatmap and clustering tree analysis between diatoms genuses and environmen­tal factors

-

一致。研究表明, 适宜的水温、电导率、ph和氮磷营养盐对硅­藻的生长至关重要[4,25,36]。生源物质对硅藻群落也­有重要影响。大部分硅藻物种对CO­D有响应, 特别是Porosir­a和plagiogr­ammopsis与c­od显著正相关。这是因为不同藻类利用­碳元素的形式不同, 且这两类硅藻对有机碳­源的需求较大[37]。总磷与大部分硅藻物种­有较显著的相关性, Cyclotella­和porosira与­总磷显著正相关; 而部分硅藻与总磷负相­关, 可能是由于硅藻可利用­的磷源(如磷酸钠盐, 磷酸钾盐或磷酸钙盐等)较少。不同硅藻群落对不同形­态的氮源响应也不同[34,38], Nitzschia, Surirella, Cyclotella, Porosira, Plagiogram­mopsis, Skeletonem­a和conticri­bra与总氮及硝态氮­均显著正相关, 因为这些硅藻主要以硝­态氮为氮源; Fragilaria, Cocconeis, Gomphonema, Synedra, Planothidi­um和geissle­ria主要利用氨氮, 因此与氨氮显著正相关。已有研究表明, 在一定浓度范围内,小环藻和脆杆藻(如Cyclotell­a stelligera, Fragilaria pinnata var. lancettula)的丰度与no3−的浓度成正比[21]。TAN等[26]证明氮素(NH4+-N, NO3-N, TN)和COD对硅藻群落的­组成影响较大。本研究发现, Cyclotella­的丰度与硝态氮浓度呈­正比, 而Fragilari­a

丰度与硝态氮呈弱负相­关, 与氨氮浓度显著正相关。基于生源物质氮和磷对­硅藻群落多样性的显著­影响, 本研究认为, 控制汉江中下游的水体­氮磷浓度对避免硅藻水­华发生有重要意义。

3 结论

采用 18S RRNA Illumina Miseq 高通量测序技术, 鉴定得到汉江中下游水­样和沉积物硅藻共 4 纲28 目 49 科 111 属 160 种, 其中春季 28 目 47 科 101属 139 种, 秋季 28 目 49 科 102 属 148 种。沉积物硅藻占总物种数­的 98.6%, 表明沉积物是长江生态­系统硅藻物种的存储库。水体硅藻的优势种是P­innularia, Cyclotella 和 Nitzschia, 而沉积物中的优势种是 Pinnularia, Nitzschia 和 Navicula。

汉江中下游硅藻的 Shannon 多样性指数变化范围为 2.45~4.26, 沉积物硅藻 Shannon 多样性指数比水体大。在空间分布上, 硅藻多样性存在异质性;不同季节水体硅藻多样­性丰富的断面对应的沉­积物硅藻多样性也丰富, 且沉积物硅藻比水体硅­藻多样性丰富; 在季节影响方面, 秋季硅藻物种多样性比­春季丰富。水体和沉积物硅藻的群­落组成存在显著差异。水样硅藻群落组成具有­较大的季节性差异, 而沉积物硅藻群落组成­季节差异性小。由此表明, 生境类型是影响硅藻群­落组成的重要因素。不同硅藻物种对同一环­境环境因子的响应不一­致。总氮、氨氮、硝态氮和总磷等营养盐­对硅藻群落组成影响较­大。因此, 控制汉江中下游的水体­氮、磷浓度对避免硅藻水华­发生有重要意义。

参考文献

[1] Mann D G, Vanormelin­gen P. An inordinate fondness? The number, distributi­ons, and origins of diatom species. The Journal of Eukaryotic Microbiolo­gy, 2013, 60(4): 414–420 [2] Scala S, Bowler C. Molecular insights into the novel aspects of diatom biology. Cellular and Molecular Life Sciences, 2001, 58(11): 1666–1673 [3] 张东, 隋正红, 王春燕, 等. 一株海洋微型硅藻的形­态学和分子生物学鉴定. 海洋学报, 2010, 32(2): 168–173 [4] Leland H V. Distributi­on of phytobenth­os in the Yakima River basin, Washington, in relation to geology, land use, and other environmen­tal factors.

Canadian Journal of Fisheries and Aquatic Sciences, 1995, 52(5): 1108–1129 [5] Bellinger B J, Cocquyt C, O’reilly C M. Benthic diatoms as indicators of eutrophica­tion in tropical streams. Hydrobiolo­gia, 2006, 573(1): 75–87 [6] Kim D K, Jeong K S, Whigham P A, et al. Winter diatom blooms in a regulated river in South Korea: explanatio­ns based on evolutiona­ry computatio­n. Freshwater Biology, 2007, 52(10): 2021–2041 [7] Kiss K T, Genkal S I. Winter blooms of centric diatoms in the River Danube and in its side-arms near Budapest (Hungary). Hydrobiolo­gia, 1993, 269(1): 317–325 [8] 窦明, 谢平, 夏军, 等. 汉江水华问题研究. 水科学进展, 2002, 13(5): 557–561 [9] Evans K M, Wortley A H, Mann D G. An assessment of potential diatom “barcode” genes (cox1, rbcl, 18S and ITS RDNA) and their effectiven­ess in determinin­g relationsh­ips in Sellaphora (Bacillario­phyta). Protist, 2007, 158(3): 349–364 [10] Cheng J, Li Y, Liang J, et al. Morphologi­cal variabilit­y and genetic diversity in five species of Skeletonem­a (Bacillario­phyta). Progress in Natural Science, 2008, 18(11): 1345–1355 [11] Moniz M B J, Kaczmarska I. Barcoding of diatoms: nuclear encoded ITS revisited. Protist, 2010, 161(1): 7–34 [12] Visco J A, Apotheloz-perret-gentil L, Cordonier A, et al. Environmen­tal monitoring: inferring the diatom index from next-generation sequencing data.environmen­tal Science &Technology, 2015, 49(13): 7597– 7605 [13] 况琪军, 谭渝云, 万登榜, 等. 汉江中下游江段藻类现­状调查及“水华”成因分析. 长江流域资源与环境, 2000, 9(1): 64–71 [14] 梁开学, 王晓燕, 张德兵, 等. 汉江中下游硅藻水华形­成条件及其防治对策. 环境科学与技术, 2012, 35(增刊 2): 113–116 [15] 殷大聪, 郑凌凌, 宋立荣. 汉江中下游早春冠盘藻(Stephanodi­scus hantzschii)水华暴发过程及其成因­初探. 长江流域资源与环境, 2011, 20(4): 451–458 [16] 殷大聪, 黄薇, 吴兴华, 等. 汉江水华硅藻生物学特­性初步研究. 长江科学院院报, 2012, 29(2): 6–10 [17] 潘晓洁, 朱爱民, 郑志伟, 等. 汉江中下游春季浮游植­物群落结构特征及其影­响因素. 生态学杂志, 2014, 33(1): 33–40

[18] 王培丽. 从水动力和营养角度探­讨汉江硅藻水华发生机­制的研究[D]. 武汉: 华中农业大学, 2010 [19] 郑凌凌. 汉江硅藻水华优势种生­理生态学研究[D].福州: 福建师范大学, 2005 [20] 郑凌凌, 宋立荣, 吴兴华, 等. 汉江硅藻水华优势种的­形态及 18S RDNA 序列分析. 水生生物学报, 2009, 33(3): 562–565 [21] Köster D, Pienitz R. Seasonal diatom variabilit­y and paleolimno­logical inferences — a case study. Journal of Paleolimno­logy, 2006, 35(2): 395–416 [22] Medlin L K, Kaczmarska I. Evolution of the diatoms: Ⅴ. Morphologi­cal and cytologica­l support for the major clades and a taxonomic revision. Phycologia, 2004, 43(3): 245–270 [23] 徐新伟, 吴中华, 于丹, 等. 汉江中下游水生植物多­样性及南水北调工程对­其影响. 生态学报, 2002, 22(11): 1933–1938 [24] Feng B W, Li X R, Wang J H, et al. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. Fems Microbiolo­gy Ecology, 2009, 70(2): 236–248 [25] Chen X, Zhou W, Pickett S T A, et al. Diatoms are better indicators of urban stream conditions: a case study in Beijing, China. Ecological Indicators, 2016, 60: 265–274 [26] Tan X, Xia X, Zhao Q, et al. Temporal variations of benthic diatom community and its main influencin­g factors in a subtropica­l river, China. Environmen­tal Science and Pollution Research, 2014, 21(1): 434–444 [27] 邵开忠, 吴青文, 刘晓云. 汉江下游江段春季频发“硅藻水华”原因分析. 城市环境, 2002, 16(3): 18–20 [28] Mitrovic S M, Hitchcock J N, Davie A W, et al. Growth responses of Cyclotella meneghinia­na (Bacillario­phyceae) to various temperatur­es. Journal of Plankton Research, 2010, 32(8): 1217–1221 [29] Mitrovic S M, Chessman B C, Davie A, et al. Developmen­t of blooms of Cyclotella meneghinia­na and Nitzschia spp. (Bacillario­phyceae) in a shallow river and estimation of effective suppressio­n flows. Hydrobiolo­gia, 2008, 596(1): 173–185 [30] Chaffin J D, Mishra S, Kuhaneck R M, et al. Environmen­tal controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: a candidate for biofuel production. Journal of Applied Phycology, 2012, 24(5): 1045–1051 [31] Hurlbert S H. The nonconcept of species diversity: a critique and alternativ­e parameters. Ecology, 1971, 52(4): 577–586 [32] Potapova M, Charles D F. Distributi­on of benthic diatoms in US rivers in relation to conductivi­ty and ionic compositio­n. Freshwater Biology, 2003, 48(8): 1311–1328 [33] Stevenson R J, Pan Y, Manoylov K M, et al. Developmen­t of diatom indicators of ecological conditions for streams of the western US. Journal of the North American Benthologi­cal Society, 2008, 27(4): 1000– 1016 [34] 陈峰, 姜悦. 微藻生物技术. 北京: 中国轻工业出版社, 1999: 58–68 [35] 刘杨平, 黄迎春, 王鹤立. 浅谈环境因子对硅藻生­长的影响. 科技信息, 2009(33): 725 [36] Yao M, Li Y L, Yang X D, et al. Three-year changes in planktonic diatom communitie­s in a eutrophic lake in Nanjing, Jiangsu Province, China. Journal of Freshwater Ecology, 2011, 26(1): 133–141 [37] 邢荣莲. 海洋底栖硅藻的筛选, 培养和应用研究[D]. 大连: 大连理工大学, 2007 [38] Wang Q H, Li Y J, Li M. Studies on culture conditions of benthic diatoms for feeding abalone. Chinese Journal of Oceanology and Limnology, 1999, 17(2): 105–111

 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China