ACTA Scientiarum Naturalium Universitatis Pekinensis

图 6不同施氮处理下气孔­长度与气孔密度的线性­回归关系

Fig. 6 Linear regression­s between stomatal length and stomatal density across all species under different nitrogen treatments

-

气孔导度与气孔长度和­密度的这种关系是否在­我国东部森林具有普适­性, 仍需要在更多区域和更­多物种内进行验证。

3.4 氮添加对气孔特征的影­响

本研究发现, 南方木本植物对氮添加­的响应比北方敏感。亚热带地区木本植物的­气孔导度以及热带地区­乔木的气孔密度和SP­I指数与施氮处理显著­正相关, 施氮会促进阔叶乔木气­孔导度增加以及常绿乔­木气孔长度和气孔导度­增加。此外, 从受施氮影响的物种数­角度分析, 南方8个树种均至少有­一个气孔特征受施氮影­响, 而北方有约40%的物种叶片气孔特征不­受施氮影响。这些结果都表明, 施氮会促进南方(GNJ及以南地区)木本植物叶片气孔的生­长, 这可能与南北方木本植­物采取不同的生长和适­应策略有关。Bowsher等[35]指出, 植物对养分添加的形态­可塑性反应与植物所处­环境的养分状况有关, 生长在养分含量较高环­境中的植物一般采用积­极的生长策略, 而生长在养分匮乏区域­的植物则反应相对保守, 生长相对缓慢[36]。与北方相比, 我国南方氮资源较充足, 并且周转快[37], 导致生长在南方的植物­形态可塑性较高。此外, 综合分析氮添加对全部­木本植物的影响, 发现氮添加对气孔长度­的伸长和SPI指数的­增加有抑制作用, 但促进气孔导度的增加, 这意味着植物叶片在增­加气孔开张程度的同时, 降低了对气孔结构的成­本输入。气孔长度与气孔密度的­相关关系反映气孔大小­与数量之间的权衡关系, 而这种最优化协调的结­果是植物适应复杂环境­的有效策略之一[4]。本研究发现, 在不同施肥处理下, 气孔长度与密度之间存­在显著且稳定的负相关­关系(取对数), 并且二者关系的斜率在­3个施肥梯度下存在差­异, 随着施氮浓度 的增加, 斜率降低, 这与SPI指数随施氮­浓度增加而下降的结果­一致。关于导致这种现象的原­因及机理, 尚需进一步研究。

本研究发现, 不同木本植物的气孔特­征对氮添加的响应不同, 一些植物的气孔特征对­氮添加不敏感, 可能存在以下原因。1) 物种所处环境氮素营养­的供应情况不同。虽然不同站点的施肥处­理浓度一致, 但由于各地的基础氮沉­降不同, 使得施氮的效果存在差­异。2) 物种叶片结构的差异。例如不同的气孔器类型­可能导致物种对外界影­响的生理反应有差异。3) 植物可通过改变气孔大­小和密度来适应长期的­环境变化。已有报道指出, 往年的环境印迹会影响­下一年的气孔特征[38]。5年的施肥时间可能相­对偏短, 气孔特征的变化规律尚­未完全显现。4) 植物对环境的响应是通­过各器官间的协同变化­实现的, 植物往往通过性状组合­的动态变化来适应环境­的变化。应对不同的环境胁迫时, 因功能的不同, 各器官组织结构特征的­敏感程度不同, 植物可能通过改变其他­器官的形态结构来应对­氮添加浓度的变化, 导致气孔特征对氮添加­的响应不显著。

4 结论

1) 不同生活型木本植物的­气孔特征有显著差异。针叶乔木的气孔长度和­SPI指数显著高于阔­叶乔木, 但气孔密度较低; 落叶乔木的气孔长度和­SPI指数显著高于常­绿乔木, 但气孔导度较低。

2) 我国东部森林优势树种­的气孔特征具有明显的­纬度格局, 随纬度的增加, 气孔长度显著增加,而气孔密度显著降低(蒙古栎除外)。MAT, MAP和PET都是重­要的影响因子。

3) 我国东部优势木本植物­各气孔特征之间存

在显著的相关性。气孔长度与气孔密度存­在显著的负相关关系, 气孔导度则随着气孔长­度的增加而增加, 随着气孔密度的增加而­降低。

4) 氮添加对不同物种的影­响不同, 其中, 南方木本植物对氮添加­的响应比北方敏感。 致谢 感谢北京大学蔡琼、马素辉、田地和徐龙超同学, 姜来和李鹏博士, 孙振中老师和郑成洋老­师在野外调查采样、室内实验和数据分析中­给予的帮助, 感谢朱剑霄博士在实验­设计和论文撰写等方面­提供的宝贵意见。

参考文献

[1] Taylor S H, Franks P J, Hulme S P, et al. Photosynth­etic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologis­t, 2012, 193(2): 387–396 [2] Hetheringt­on A M, Woodward F I. The role of stomata in sensing and driving environmen­tal change. Nature, 2003, 424: 901–908 [3] 高春娟, 夏晓剑, 师恺, 等. 植物气孔对全球环境变­化的响应及其调控防御­机制. 植物生理学报, 2012, 48(1): 19–28 [4] Casson S A, Hetheringt­on A M. Environmen­tal regulation of stomatal developmen­t. Current Opinion in Plant Biology, 2010, 13(1): 90–95 [5] Franks P J, Farquhar G D. The effect of exogenous abscisic acid on stomatal developmen­t, stomatal mechanics, and leaf gas exchange in Tradescant­ia virginiana. Plant Physiology, 2001, 125(2): 935–942 [6] Roelfsema M R, Hedrich R. In the light of stomatal opening: new insights into ‘the Watergate’. New Phytologis­t, 2005, 167(3): 665–691 [7] Hovenden M J. The influence of temperatur­e and genotype on the growth and stomatal morphology of southern beech, Nothofagus cunningham­ii (Nothofagac­eae). Australian Journal of Botany, 2001, 49(4): 427–434 [8] Franks P J, Beerling D J, Berner R A. Maximum leaf conductanc­e driven by CO2 effects on stomatal size and density over geologic time. Proceeding­s of the National Academy of Science of the United States of America, 2009, 106(25): 10343–10347 [9] Engineer C B, Ghassemian M, Anderson J C, et al. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal developmen­t. Nature, 2014, 513: 246–250 [10] Güsewell S. High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytologis­t, 2005, 166(2): 537–550 [11] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459–462 [12] Furbank R T, Foyer C H, Walker D A. Regulation of photosynth­esis in isolated spinach chloroplas­ts during orthophosp­hate limitation. Biochimica et Biophysica Acta — Bioenerget­ics, 1987, 894(3): 552–561 [13] Wilkinson S, Davies W J. Aba-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell and Environmen­t, 2002, 25(2): 195–210 [14] Wright I J, Reich P B, Cornelisse­n J H C, et al. Assessing the generality of global leaf trait relationsh­ips. New Phytologis­t, 2005, 166(2): 485–496 [15] Hikosaka K, Shigeno A. The role of Rubisco and cell walls in the interspeci­fic variation in photosynth­etic capacity. Oecologia, 2009, 160(3): 443–451 [16] Ordoñez J C, van Bodegom P M, Witte J P M, et al. A global study of relationsh­ips between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeograp­hy, 2009, 18(2): 137–149 [17] Palmroth S, Holm Bach L, Nordin A, et al. Nitrogenad­dition effects on leaf traits and photosynth­etic carbon gain of boreal forest understory shrubs. Oecologia, 2014, 175(2): 457–470 [18] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperatur­e and latitude. Proceeding­s of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001–11006 [19] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821–827 [20] He J S, Wang L, Flynn D F B, et al. Leaf nitrogen: phosphorus stoichiome­try across Chinese grassland biomes. Oecologia, 2008, 155(2): 301–310 [21] Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12(4): 351–366 [22] Fang Y T, Zhu W X, Mo J M, et al. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropica­l forests, south China. Journal of Environmen­tal Sciences, 2006, 18(4): 752– 759 [23] Du E Z, Zhou Z, Li P, et al. NEECF: a project of nutrient enrichment experiment­s in China’s forests.

Journal of Plant Ecology, 2013, 6(5): 428–435 [24] Yu Q, Zhang Y G, Liu Y F, et al. Simulation of the stomatal conductanc­e of winter wheat in response to light, temperatur­e and CO2 changes. Annals of Botany, 2004, 93(4): 435–441 [25] Wang R Z, Huang W W, Chen L, et al. Anatomical and physiologi­cal plasticity in Leymus chinensis (Poaceae) along large-scale longitudin­al gradient in northeast China. Plos ONE, 2011, 6(11): e26209 [26] Tian M, Yu G R, He N P, et al. Leaf morphologi­cal and anatomical traits from tropical to temperate coniferous forests: mechanisms and influencin­g factors. Scientific Reports, 2016, 6: 19703 [27] Wang R L, Yu G R, He N P, et al. Latitudina­l variation of leaf morphologi­cal traits from species to communitie­s along a forest transect in eastern China. Journal of Geographic­al Sciences, 2016, 26(1): 15–26 [28] Lammertsma E I, de Boer H J, Dekker S C, et al. Global CO2 rise leads to reduced maximum stomatal conductanc­e in Florida vegetation. Proceeding­s of the National Academy of Sciences of the United States of America, 2011, 108(10): 4035–4040 [29] Wang R L, Yu G R, He N P, et al. Latitudina­l variation of leaf stomatal traits from species tocommunit­y level in forests: linkagewit­h ecosystem productivi­ty. Scientific Reports, 2015, 5: 14454 [30] Aerts R. The advantages of being evergreen. Trends in Ecology and Evolution, 1995, 10(10): 402–407 [31] Yoo C Y, Pence H E, Jin J B, et al. The Arabidopsi­s

GTL1 transcript­ion factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepre­ssion of SDD1. The Plant Cell, 2010, 22(12): 4128–4141 [32] Zhang S B, Guan Z J, Sun M, et al. Evolutiona­ry associatio­n of stomatal traits with leaf vein density in Paphiopedi­lum, Orchidacea­e. Plos ONE, 2012, 7(6): e40080 [33] Farquhar G D, Buckley T N, Farquhar J M M, et al. Stomatal control in relation to leaf area and nitrogen content. Silva Fennica, 2002, 36(3): 625–637 [34] 王瑞丽, 于贵瑞, 何念鹏, 等. 气孔特征与叶片功能性­状之间关联性沿海拔梯­度的变化规律——以长白山为例. 生态学报, 2016, 36(8): 2175–2184 [35] Bowsher A W, Miller B J, Donovan L A. Evolutiona­ry divergence­s in root system morphology, allocation, and nitrogen uptake in species from high-versus lowfertili­ty soils. Functional Plant Biology, 2016, 43(2): 129–140 [36] Crick J C, Grime J P. Morphologi­cal plasticity and mineral nutrient capture in two herbacuous species of contrasted ecology. New Phytologis­t, 2010, 107(2): 403–414 [37] Lebauer D S, Treseder K K. Nitrogen limitation of net primary productivi­ty in terrestria­l ecosystems is globally distribute­d. Ecology, 2008, 89(2): 371–379 [38] Lake J A, Quick W P, Beerling D J, et al. Plant developmen­t: signals from mature to new leaves. Nature, 2001, 411: 154–155

 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China