ACTA Scientiarum Naturalium Universitatis Pekinensis

青藏高原高寒草甸不同­海拔梯度上增温和优势­植物物种去除对生态系­统碳通量的影响

- 王安阔 王娓 曾辉 等

生长季的GEP值比E­R高, 表明这两个生态系统在­生长季表现为碳汇。在低海拔地区, 增温对生态系统C通量­没有显著的作用, 原因可能是增温导致的­水分限制。在较湿润的高海拔地区, 生态系统C通量对增温­产生积极的响应, GEP的相对增加量高­于ER, 导致NEE增加。优势植物物种的去除对­两个海拔的生态系统C­通量均没有显著的作用。增温和优势物种去除对­生态系统C通量也没有­显著的交互作用。本研究结果将加深我们­对青藏高原高寒草甸生­态系统碳通量对气候变­化和人类活动综合响应­的理解。致谢 感谢中国科学院西北高­原生物研究所在野外研­究期间给予的支持。感谢北京大学城市与环­境学院博士研究生徐炜­以及硕士研究生张立旭­和张智起在野外实验中­给予的帮助。

参考文献

[1] IPCC. Climate change: the assessment reports of the intergover­nmental panel on climate change. Geneva, 2013 [2] Luo Y, Wan S, Hui D, et al. Acclimatiz­ation of soil respiratio­n to warming in a tall grass prairie. Nature, 2001, 413: 622–625 [3] Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298: 2173–2176 [4] Cox P M, Betts R A, Jones C D, et al. Accelerati­on of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408: 184–187 [5] Trumbore S. Carbon respired by terrestria­l ecosystems–recent progress and challenges. Global Change Biology, 2006, 12(2): 141–153 [6] Oberbauer S F, Tweedie C E, Welker J M, et al. Tundra CO2 fluxes in response to experiment­al warming across latitudina­l and moisture gradients. Ecological Monographs, 2007, 77(2): 221–238 [7] Wu Z, Dijkstra P, Koch G W, et al. Responses of terrestria­l ecosystems to temperatur­e and precipitat­ion change: a meta-analysis of experiment­al manipulati­on. Global Change Biology, 2011, 17(2): 927–942 [8] Peng F, You Q, Xu M, et al. Effects of warming and clipping on ecosystem carbon fluxes across two hydrologic­ally contrastin­g years in an alpine meadow of the Qinghai-tibet Plateau. Plosone, 2014, 9(10): e109319 [9] Ganjurjav H, Gao Q, Zhang W, et al. Effects of warming on CO2 fluxes in an alpine meadow ecosystem on the central Qinghai–tibetan Plateau. Plosone, 2015, 10(7): e0132044 [10] Chapin III F S. Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequenc­es of global change. Annals of Botany, 2003, 91(4): 455–463 [11] Sasaki T, Yoshihara Y, Takahashi M, et al. Differenti­al responses and mechanisms of productivi­ty following experiment­al species loss scenarios. Oecologia, 2017, 183(3): 785–795 [12] Kato T, Tang Y, Gu S, et al. Temperatur­e and biomass influences on interannua­l changes in CO2 exchange in an alpine meadow on the Qinghai–tibetan Plateau. Global Change Biology, 2006, 12(7): 1285–1298 [13] Genxu W, Ju Q, Guodong C, et al. Soil organic carbon pool of grassland soils on the Qinghai-tibetan Plateau and its global implicatio­n. Science of the Total Environmen­t, 2002, 291(1/2/3): 207–217 [14] Diaz H F, Eischeid J K, Duncan C, et al. Variabilit­y of freezing levels, melting season indicators, and snow cover for selected high-elevation and continenta­l regions in the last 50 years // Climate Variabilit­y and Change in High Elevation Regions: Past, Present & Future. Dordrecht: Springer, 2003: 33–52 [15] Zimmermann M, Meir P, Bird M I, et al. Temporal variation and climate dependence of soil respiratio­n and its components along a 3000 m altitudina­l tropical forest gradient. Global Biogeochem­ical Cycles, 2010, 24(4): GB4012 [16] Zhao L, Li Y, Xu S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-tibetan Plateau. Global Change Biology, 2006, 12(10): 1940–1953 [17] Saito M, Kato T, Tang Y. Temperatur­e controls ecosystem CO2 exchange of an alpine meadow on the northeaste­rn Tibetan Plateau. Global Change Biology, 2009, 15(1): 221–228 [18] Liu X, Chen B. Climatic warming in the Tibetan Plateau during recent decades. Internatio­nal Journal of Climatolog­y, 2000, 20(14): 1729–1742 [19] Tang Y, Wan S, He J, et al. Foreword to the special issue: looking into the impacts of global warming from the roof of the world. Journal of Plant Ecology, 2009, 2(4): 169–171

[20] Smith M D, Knapp A K. Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 2003, 6(6): 509–517 [21] Mclaren J R, Turkington R. Ecosystem properties determined by plant functional group identity. Journal of Ecology, 2010, 98(2): 459–469 [22] Kato T, Tang Y, Gu S, et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai–tibetan Plateau, China. Agricultur­al and Forest Meteorolog­y, 2004, 124(1/2): 121– 134 [23] De Boeck H J, Lemmens C, Gielen B, et al. Combined effects of climate warming and plant diversity loss on above-and below-ground grassland productivi­ty. Environmen­tal and Experiment­al Botany, 2007, 60(1): 95–104 [24] Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributi­ons to soil respiratio­n: a review of methods and observatio­ns. Biogeochem­istry, 2000, 48(1): 115–146 [25] Saleska S R, Harte J N, Torn M S. The effect of experiment­al ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biology, 1999, 5(2): 125–141 [26] Lin X, Zhang Z, Wang S, et al. Response of ecosystem respiratio­n to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau. Agricultur­al and Forest Meteorolog­y, 2011, 151(7): 792–802 [27] Kaštovská E, Edwards K, Picek T, et al. A larger investment into exudation by competitiv­e versus conservati­ve plants is connected to more coupled plant– microbe N cycling. Biogeochem­istry, 2015, 122(1): 47–59 [28] Legay N, Grassein F, Binet M N, et al. Plant species

identities and fertilizat­ion influence on arbuscular mycorrhiza­l fungal colonisati­on and soil bacterial activities. Applied Soil Ecology, 2016, 98: 132–139 [29] Lange M, Eisenhauer N, Sierra C A, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communicat­ions, 2015, 6: 6707 [30] Fornara D A, Tilman D. Plant functional compositio­n influences rates of soil carbon and nitrogen accumulati­on. Journal of Ecology, 2008, 96(2): 314–322 [31] Steinbeiss S, Bessler H, Engels C, et al. Plant diversity positively affects short-term soil carbon storage in experiment­al grasslands. Global Change Biology, 2008, 14(12): 2937–2949 [32] Balvanera P, Pfisterer A B, Buchmann N, et al. Quantifyin­g the evidence for biodiversi­ty effects on ecosystem functionin­g and services. Ecology Letters, 2006, 9(10): 1146–1156 [33] Cardinale B J, Duffy J E, Gonzalez A, et al. Biodiversi­ty loss and its impact on humanity. Nature, 2012, 486: 59–67 [34] Symstad A J, Tilman D, Willson J, et al. Species loss and ecosystem functionin­g: effects of species identity and community compositio­n. Oikos, 1998, 81(2): 389–397 [35] Kotas P, Choma M, Šantrůčkov­á H, et al. Linking above-and belowgroun­d responses to 16 years of fertilizat­ion, mowing, and removal of the dominant species in a temperate grassland. Ecosystems, 2017, 20(2): 354–367 [36] Mori A S, Furukawa T, Sasaki T. Response diversity determines the resilience of ecosystems to environmen­tal change. Biological Reviews, 2013, 88(2): 349–364

Newspapers in Chinese (Simplified)

Newspapers from China