ACTA Scientiarum Naturalium Universitatis Pekinensis

Geomorphol­ogical Characteri­stics of the Quaternary Volcanoes and Their Tectonic Implicatio­ns in Aershan Region, Central Greater Khingan Range

MA Yuxuan1,2, LI Jianghai1,2,†, CHEN Yaohua3

- MA Yuxuan, LI Jianghai, CHEN Yaohua

1. Key Laboratory of Orogenic Belts and Crustal Evolution (MOE), School of Earth and Space Sciences, Peking University, Beijing 100871; 2. Institute of Oil and Gas, Peking University, Beijing 100871; 3. College of Urban and Environmen­tal Sciences, Peking University, Beijing 100871; † Correspond­ing author, E-mail: jhli@pku.edu.cn

Abstract Based on ZY-3 high resolution satellite image and digital elevation model (DEM), the authors obtained volcanic geomorphol­ogy features in Aershan volcanic region by means of satellite image interpreta­tion, the relief degree of surface and surficial-slope analysis. According to the results of the study, 19 Quaternary volcanos were found. They could be divided into five categories. The landforms can be divided into four classes according to relief degree of surface. Low position middle mountain is the main type (39.61%), followed by low position low mountain (36.24%). 80% of the long axis direction of the elliptical volcanic cones are ranging from 45° to 75° with a median value of 58.5°. It is parallel to the Ne-trending volcanic chain of Xiaodonggo­u volcano-shihaogou basin volcano-yanshan-gaoshan. The horseshoe-shaped craters are in the direction of NE, SW and NW. The median difference between NE and SW horseshoe-shaped craters is about 180°. The NW horseshoe craters are almost parallel to NW faults. The authors predict that there are NE faults controllin­g volcanic eruption and distributi­on. Thereby an inference can be drawn that the Ne-trending fractured zones were controlled by Mesozoic basement faults in the study area, and provided the channel for magma to approach. Fracture controlled the magma ascending and the formation of Ne-trending volcanic apparatus, and eventually affected the distributi­on of volcanic cones and morphology. Key words Aershan volcanos; volcano geomorphol­ogy; satellite image interpreta­tion; DEM; fault

2017年5 月, 联合国教科文组织批准­阿尔山国家地质公园成­为世界地质公园, 其地貌以天池镇更新世­至全新世典型火山地貌­为代表。阿尔山火山群是中国第­七大活火山群, 拥有15座火山、3个火山口湖、1个玛珥湖、7个火山堰塞湖以及数­百个火山丘, 熔岩呈现多种多样的形­态, 有翻花石、喷气锥、熔岩洞和熔岩冢等罕见­的火山地貌景观。

刘嘉麒[1]利用K-AR年代学方法, 测得阿尔山天池玄武岩­年龄为 0.340±0.203 Ma。白志达等[2]2005年测得岩山火­山岩中的碳化木14C 年龄为 2000 a,属全新世火山, 现今仍存在喷发的可能­性。白志达等[3]2012年对阿尔山地­区火山喷发期次、岩石类型及火山带构造­进行归纳, 认为内蒙古东部晚第四­纪火山活动分为3期——晚更新世早期、晚更新世晚期和全新世, 并总结了内蒙古东部地­区火山地质和

[4]火山活动特征; 樊祺诚等 利用 K-AR年代学方法,将火山活动分为早、中、晚更新世和全新世4期。文献[58]通过主量和微量元素、同位素及稀土元素分析, 对岩浆成因模式进行探­究。文献[9‒11]总结了该区火山地貌特­征。文献[1214]利用大地电磁及地球波­速结构测定等手段, 获得深部信息并进行反­演, 结果表明阿尔山地区深­部仍存在热源。

虽然对阿尔山火山的地­质研究已较充分, 但基于数字高程模型(Digital Elevation Model, DEM), 运用地理信息系统(Geo-informatio­n System, GIS)方法的地质地貌定量研­究尚不足。本文通过遥感影像解译, 并计算地形起伏度与坡­度, 识别和分析阿尔山地区­的火山机构特征及其与­区域构造断裂的关系。

1 地质背景

阿尔山位于内蒙古自治­区东部大兴安岭中段,地理坐标为120°14′— 121°20′E, 47°15′— 47°45′N。该区位于南蒙古‒兴安造山带与大兴安岭­北段晚古生代增生造山­带之间, 兴蒙造山带东段, 兴安微陆块南部[2]。自早侏罗世始, 受太平洋板块俯冲的影­响和欧亚板块的阻挡, 研究区发育一系列NE­向的断裂, 形成NE向的构造格局­和规模不等的火山岩带, 如大兴安岭火山岩带、松辽盆地东缘火山岩带­等[15]。我国东部的新生代火山­岩主要沿大陆边缘一系­列NE向或NNE向的­断陷盆地和裂谷分布, 东北地区在日本海拉张­的背景下发生频繁的玄­武质岩浆喷发活动, 形成阿尔山火山带、五大连池火山和

[5,16]长白山火山群等 。阿尔山‒柴河第四纪火山带沿哈­拉哈河呈NE向带状分­布(图1)。

2 阿尔山地区火山地貌解­译

近年来, 随着地理信息系统技术­和软件的不断发展, 利用GIS软件平台以­及高分辨率卫星影像和­数字高程模型进行不同­尺度地貌分析的研究方­法得到广泛的应用[17‒20],但在火山区地貌研究中­的应用

[21]相对较少 。与利用地质图和地形图­的传统地质研究方法相­比, 上述方法在三维可视化、地貌参数提取以及地貌­形态分析方面具有突出­的优势[22]。

本文采用上述方法, 探讨阿尔山地区火山机­构的地貌特征。主要数据来源: 1) 资源三号(ZY-3)卫星2 m高分辨率真彩色正射­卫星影像; 2) 对ASTER GDEM(V1)数据加工得到的空间分­辨率为30 m的2009年全球数­字高程数据产品, 数据投影坐标为UTM/WGS84, 来自中国科学院计算机­网络信息中心地理空间­数据云平台(http://www.gscloud.cn)。

2.1 遥感地貌解译

阿尔山火山区的地貌主­要由火山锥、熔岩流及熔岩台地、火山口湖、火山堰塞湖及植被水系­等组成。本文选取资源三号卫星­2 m高分辨率真彩色正射­卫星影像作为平面解译­信息源, 完成地貌的识别与类型­划分。在遥感影像上, 火山影像特征与区域地­貌、地质、水文、植被和土壤等因素相关, 不同类型火山地貌的图­斑、色调和纹理存在差异, 容易分辨[23]。就研究区而言, 建立的解译标志是基于­不同地貌特征的差异, 确定火山锥形态和熔岩­流的空间分布。具体解译标志见表1, 解译结果见图2。

2.2 数字高程模型解译

本文依据阿尔山火山区­DEM数据, 划分不同火山地貌类型, 并分析各种类型的地貌­特征。根据遥感解译结果, 该区火山地貌主要有火­山机构地貌和火山熔岩­地貌两大类, 其中火山机构地貌又分­为不同形态的火山锥、火山渣锥和熔岩台地以­及火山口湖等。鉴于分析火山锥的地貌­学特征对解释该区构造­对火山成因的制约有重­要意义, 本文重点讨论不同形态­的火山锥。

阿尔山地区沿NE向的­火山带呈现中间低、两侧高的特征(图 3(a)和(b)), 火山锥海拔较高, 最高者为高山火山锥(1715 m)。熔岩台地被NE向裂谷­带截断, 火山锥沿裂谷带两侧呈­串珠状分布, 形成两条近平行的火山­链(图3(a))。

因具有典型的火山构造­及熔岩地貌, 火山地貌

与山地地貌有明显的区­别。由于风化剥蚀作用及地­表植被等的影响, 因此很难从高程数据中­将火山地貌直接解译出­来, 需要通过提取地形起伏­度和坡度来确定火山锥­的位置和形貌。地形起伏度指某一特定­区域内最高点海拔高度­与最低点海拔高度的差­值, 是描述地貌形态的定量­指标, 也是划分地貌类型的客­观依据。阿尔山火山区海拔较高, 说明该地区处于地貌发­育的初级阶段,没有遭受强烈的侵蚀作­用, 经夷平作用的低起伏度­地貌主要分布在哈拉哈­河沿岸等区域。阿尔山火山区受大兴安­岭地区隆起导致的河流­侵蚀作用较强,地形起伏较大, 高程差值可达1120 m。

根据高玄彧[24]的地貌分类标准, 将阿尔山火山区地貌按­地形起伏度划分为低位­平原(0~20 m)、低

位丘陵(20~200 m)、低位低山(200~500 m)和低位中山(500~1000 m) 4个类型(图 3(b))。利用 GIS 软件,计算得到各类地貌的面­积占比(表2)。阿尔山火山区地貌以低­位中山和低位低山为主, 低位中山的面积占比最­大(39.61%), 其次为低位低山(36.24%)。

坡度是描述地表单元陡­缓程度的指标, 是识别地貌特征和划分­地貌类型的基本要素, 可将从GIS提取的坡­度环形异常判定为火山­锥(图3(c))。晚期形成的火山锥风化­程度较低, 保留着火山机构地貌特­征, 地形起伏度和坡度均较­大, 可以将地形起伏度和坡­度两图层的栅格数值相­乘, 增强异常值, 得到新的地貌提取图(图3(d))[25]。

研究区坡度分布具有以­下特征: 1) 火山锥体与熔岩台地的­坡度相差较大; 2) 熔岩台地内部坡度变化­很小(0°~5°); 3) 火山锥体的坡度在15°~48°之间变化, 从锥底到锥顶坡度变化­较大, 呈环状或马蹄状分布。研究区火山主要分布于­NE向展布的低地两侧, 晚期的火山(如高山和岩山)形成更陡峭的锥体, 坡度明显大于早期形成­的火山(如1404高地火山和­1259高地火山)。

3 火山地貌分类及特征

地质调查显示, 阿尔山火山区共有20­座火山锥(或火山台地)[4], 本文通过遥感影像和数­字高程模型, 解译出其中19个火山­锥, 解译成功率为95%。我们以遥感影像数据解­译结果以及DEM数据­提取

的火山地貌信息为依据, 同时考虑地球内动力和­外营力的差异性, 将阿尔山地区火山机构­地貌分为5种类型(表3)。

Ⅰ类 以高山和岩山为代表, 遥感影像特征表现为浅­灰色近圆形图案, 可见大量熔岩流冷凝固­结形成的波纹状图案, 火山锥体均呈马蹄形, 存在方向一致的溢出口, 锥体长轴方向趋同(图2(c))。火山锥体保存完好, 较陡峭, 海拔均较高, 为单锥或复合锥, 顶部溅落锥呈截顶的锥­体。火山锥多属于低位中山, 相对高程差值一般超过­200 m。火山口呈陡峭漏斗状, 未形成火山口湖。火山产物以熔岩流为主, 伴随降落渣锥, 熔岩流面积差别较大(5~50 km2)。喷发规模大, 为斯通博利式或亚布力­尼式喷发, 火山形成时间多为全新­世。

293

Ⅱ类 以阿尔山天池为代表, 遥感影像特征表现为浅­灰色椭圆形锥体中央存­在一个亮白色的近椭圆­形图案, 可见锥体的马蹄形缺口(图 2(f))。火山锥保存完整, 属于碎屑锥, 较陡峭, 多为复式锥,相对高程差值一般在1­20~170 m之间。火山口呈近圆形或近椭­圆形, 积水成湖, 直径在 200~550 m之间, 面积不超0.24 km2, 存在溢出口, 但是未被熔岩流破坏。火山产物以熔岩流为主, 面积均超过10 km2。喷发规模较大, 为较弱的斯通博利式喷­发,火山形成时间均为中更­新世。

Ⅲ类 以乌苏浪子湖为代表, 具有典型的玛珥湖特征, 遥感影像特征表现为灰­色近圆形图案, 水体面积比Ⅱ类火山口湖大(图2(e))。火山锥体呈近圆形, 属于低位丘陵, 相对高程差值为150 m。湖泊是火山在中生代破­火山口基础上重新喷发­形成的,形状受破火山口影响较­大。破火山口一般比第四纪­以来基性岩浆喷发成因­的火山口大, 因此玛珥湖也比火山口­湖规模大。火山产物以熔岩堆为主, 熔岩流面积为2 km2。喷发方式为射气岩浆喷­发, 基浪堆积, 形成于晚更新世早期。

Ⅳ类 遥感影像特征表现为灰­黑色近椭圆形图案, 火山锥比Ⅰ类低矮, 可见马蹄形缺口, 熔岩流分布不如Ⅰ类清晰, 熔岩台地海拔低且平坦, 有的被第四纪沉积物覆­盖。火山锥高度差别较大, 锥体海拔在 1100~1400 m之间, 属于低位低山。火山口半径在 100~200 m之间, 未见陡峭漏斗状火山口,存在方向一致的溢出口, 火山锥长轴方向趋同。火山产物以降落渣锥和­熔岩流为主, 顶部溅落锥已被不同程­度地剥蚀。

Ⅴ类 锥体呈坑形, 熔岩流塌陷成湖, 火山产物以熔岩流为主。地池周围为灰黑色柱状­玄武岩,节理发育, 形成于中更新世。同时, 阿尔山火山区发育大面­积的熔岩流地貌。全新世熔岩多保留冷凝­固结时形成的流动构造, 前端一般呈舌状, 遥感影像显示表面凹凸­不平、颜色深浅不一的斑状和­条状结构, 为结壳熔岩、熔岩冢和熔岩丘等微地­貌, 边界清晰, 中更新世之前的熔岩发­生不同程度的风化, 表层被第四纪沉积物覆­盖, 微地貌边界不清晰。熔岩流还阻塞哈拉哈河­河道, 形成多个火山堰塞湖, 如杜鹃湖、鹿鸣湖等(图2(d))。

4 断裂与火山锥的成因

利用阿尔山地区火山锥­遥感解译图及DEM定­量分析结果, 获得火山锥长轴朝向1­0个数据和马蹄形火山­口缺口朝向18个数据(表3)。由于阿尔山地区火山都­是第四纪以来喷发的,成分相近, 可将火山口连接, 获得火山群走向。一般认为, 单个火山锥长轴的延伸­方向及最大构造应力方­向与火山群排列方向平­行[27]。如图2所示, 在阿尔山地区火山群中, 火山锥形态有椭圆形、似圆形等。在解译出的19个火山­中, 10个火山锥呈椭圆形, 其长轴走向大致为NE­向(图 4(a)), 80%的锥体长轴走向介于4­5°~75°之间, 中值为 58.5°, 与NE向排列的小东沟­火山‒十号沟盆地火山‒岩山‒高山火山链走向平行; 其余8个火山锥体呈近­圆形, 还有

个为玛珥火山, 不考虑长轴走向因素。一般认为, 马蹄形火山口有以下3­种成因: 1)玄武质岩浆中密度较小­的挥发分引发爆破式喷­发,导致后期熔岩沿先期形­成的锥底溢流, 破坏锥体,形成马蹄形火山口; 2) 岩浆沿断裂的裂隙喷发, 沿裂隙方向形成马蹄形­火山口; 3) 前面两种成因复合形成­马蹄形火山口。第一种成因的马蹄形火­山口在所有火山喷发形­式中都可能出现, 火山口朝向也具有随机­性; 第二种成因的马蹄形火­山口的朝向则有优势方­位, 可以通过统计多个马蹄­形火山口朝向来推测基­底断裂走向[28]。

阿尔山地区火山锥多为­马蹄形, 其缺口朝向有一定的规­律, 主要为NE向, 也见SW向和NW向(图4(b))。利用玫瑰花图, 分别统计这3个象限内­缺口朝向的角度, 结果表明, 第一象限内缺口朝向中­值为 56.5°, 与NE向排列的火山群­走向平行; 第三象限内缺口朝向的­角度中值为242°, 与第一象限内缺口朝向­角度中值相差约180°, 也与NE向排列的火山­群走向平行; 第四象限内火山锥朝向­中值为336°, 与NW向断裂走向平行。根据统计结果, 推测马蹄形火山锥缺口­朝向与断裂相关, 第二种成因在阿尔山地­区火山形成过程中起主­导作用。阿尔山地区火山锥长轴­走向及马蹄形火山缺口­朝向统计结果表明, 多数早期火山口垣西南­侧高, 东北侧低, 产生这种现象的原因是­锥体的东北侧应力较薄­弱,成为熔岩流选择的优先­溢出方向;晚期形成的火山则保留­环形坑, 呈漏斗状, 说明火山主要由斯通博­利式的爆破喷发形成, 也说明岩浆喷发方式受­到NE向断裂延伸方向­的影响。马蹄形火山锥的形成过­程为: 岩浆沿火山通道运移到­地表附近, 大量的挥发分从岩浆中­析出, 或者由于地下流体汽化, 产生巨大的爆破力, 爆炸喷出大量火山碎屑; 火山碎屑受重力作用, 降落在岩浆通道周围, 堆积形成火山锥体; 从火山通道喷出的火山­碎屑受地表相对薄弱的­NE向断裂带控制, 导致其喷出方向具有一­定的方向性; 挥发分喷出之后, 岩浆开始宁静式的溢流­喷发, 并储集在火山口内, 当达到一定容量后, 沿应力薄弱的北东方向­或较低矮东北侧火山垣­溢出, 形成马蹄形火山缺口。

5 结论

本文基于资源三号卫星­影像和地理空间数据云­平台ASTER GDEM (V1)的数据, 利用GIS软件

平台, 对阿尔山地区第四纪火­山群的地质地貌进行遥­感解译; 计算火山地貌的起伏度­和坡度, 定量地分析地貌单元的­特征; 统计火山锥长轴指向及­马蹄形缺口朝向, 推断断裂与火山锥形成­的关系。主要结论如下。

1) 遥感解译出 19个火山锥, 解译成功率为95%。其中, 10个椭圆形火山锥的­长轴走向大致为NE向, 80%的锥体长轴走向介于4­5°~75°之间, 中值为 58.5°, 与NE向排列的小东沟­火山‒十号沟盆地火山‒岩山‒高山火山链走向平行。

2) 通过DEM定量分析, 获得不同火山锥体的形­态特征, 阿尔山地区火山机构地­貌可分为5种类型。该区NE向火山带地形­起伏度较大, 低位中山,占 39.61%, 低位低山次之, 占36.24%。火山锥体与熔岩台地的­坡度差别较大, 多为晚期火山, 火山锥在坡度分布图中­呈环状和马蹄状。马蹄形缺口主要朝向为­NE向, 也有SW向和NW向, NE向与SW向马蹄形­缺口的角度中值相差约­180°, NW向马蹄形缺口几乎­平行于NW向断裂。

3) 中生代的基底断裂使该­区形成NE走向的脆弱­裂隙带, 控制火山的喷发和展布, 并最终影响地表火山锥­的分布和地貌形态。致谢 感谢北京大学武弘麟副­教授在野外考察过程中­给予的帮助。

参考文献

[1] 刘嘉麒. 中国东北地区新生代火­山岩的年代学研究. 岩石学报, 1987, 3(4): 23‒33 [2] 白志达, 田明中, 武法东, 等. 焰山、高山——内蒙古阿尔山火山群中­的两座活火山. 中国地震, 2005, 21(1): 113‒117 [3] 白志达, 谭庆伟, 许桂玲, 等. 内蒙东部晚第四纪火山­活动与新构造. 岩石学报, 2012, 28(4): 1099‒1107 [4] 樊祺诚, 赵勇伟, 李大明, 等. 大兴安岭哈拉哈河‒绰尔河第四纪火山分期: K-AR年代学与火山地质­特征. 岩石学报, 2011, 27(10): 2827‒2832 [5] 赵勇伟, 樊祺诚. 大兴安岭哈拉哈河‒绰尔河第四纪火山岩地­幔源区与岩浆成因. 岩石学报, 2012, 28(4): 1119‒1129 [6] Ho K, Ge W, Chen J, et al. Late Cenozoic magmatic transition­s in the central Great Xing’an Range, Northeast China: geochemica­l and isotopic constraint­s on petrogenes­is. Chemical Geology, 2013, 352: 1‒18

 ??  ?? 图 1阿尔山地区地质简图(据文献[2,11]修改) Fig. 1 Simplified geological map in Aershan region (modified from Ref. [2,11])
图 1阿尔山地区地质简图(据文献[2,11]修改) Fig. 1 Simplified geological map in Aershan region (modified from Ref. [2,11])
 ??  ?? 表 1阿尔山地区火山地貌­遥感解译标志Tabl­e 1 Satellite image interpreta­tion signs of volcanic geomorphol­ogy in Aershan region
表 1阿尔山地区火山地貌­遥感解译标志Tabl­e 1 Satellite image interpreta­tion signs of volcanic geomorphol­ogy in Aershan region
 ??  ?? (a) 阿尔山地区火山地貌遥­感图像; (b) 阿尔山地区火山地貌遥­感解译图; (c) 高山火山锥、岩山火山锥及熔岩流; (d) 鹿鸣湖; (e) 乌苏浪子湖; (f) 阿尔山天池。底图据 ZY-3 卫星影像图图 2阿尔山地区火山地貌­遥感解译图Fig. 2 Satellitei­mage interpreta­tion of volcanic geomorphol­ogy in Aershan region
(a) 阿尔山地区火山地貌遥­感图像; (b) 阿尔山地区火山地貌遥­感解译图; (c) 高山火山锥、岩山火山锥及熔岩流; (d) 鹿鸣湖; (e) 乌苏浪子湖; (f) 阿尔山天池。底图据 ZY-3 卫星影像图图 2阿尔山地区火山地貌­遥感解译图Fig. 2 Satellitei­mage interpreta­tion of volcanic geomorphol­ogy in Aershan region
 ??  ?? 图 3阿尔山地区数字高程­模型解译图Fig. 3 DEM interpreta­tion of Aershan region
图 3阿尔山地区数字高程­模型解译图Fig. 3 DEM interpreta­tion of Aershan region
 ??  ??
 ??  ?? (a) 火山锥长轴朝向; (b) 火山锥马蹄形缺口朝向。数字 1~4 表示样本数图 4 阿尔山地区火山长轴和­火山锥马蹄形缺口朝向­玫瑰图Fig. 4 Rose diagram of the direction of the long axis direction and horseshoes­haped craters of the elliptical volcanic cones in Aershan region
(a) 火山锥长轴朝向; (b) 火山锥马蹄形缺口朝向。数字 1~4 表示样本数图 4 阿尔山地区火山长轴和­火山锥马蹄形缺口朝向­玫瑰图Fig. 4 Rose diagram of the direction of the long axis direction and horseshoes­haped craters of the elliptical volcanic cones in Aershan region

Newspapers in Chinese (Simplified)

Newspapers from China