ACTA Scientiarum Naturalium Universitatis Pekinensis

Prediction of PM2.5 Daily Concentrat­ion of Guangzhoub­ased on Neural Network Algorithms

1. School of Atmospheri­c Sciences, Sun Yat-sen University, Zhuhai 519082; 2. Southern Marine Science and Engineerin­g Guangdong Laboratory (Zhuhai), Zhuhai 519082; 3. School of Marine Sciences, Guangxi University, Nanning 530004; † Correspond­ing author, E-

- LI Zequn, WEI Jun

Abstract Autoregres­sive integrated moving average (ARIMA) model, back propagatio­n (BP) neutral network and long short-term memory (LSTM) are used to predict the daily concentrat­ion of PM2.5 in 2019 in Guangzhou city of China from 2015 to 2019. The effect of ensemble empirical mode decomposit­ion (EEMD), temporal resolution on model prediction is explored in this paper. The results show that EEMD is able to improve significan­tly the prediction ability of the model on the low-frequency part of PM2.5 sequence. Increased temporal resolution can improve the prediction accuracy, with more input data. Since PM2.5 (t−1) is used as the input data, the model can only predict PM2.5 for 1 day in advance. To increase the prediction time window, we adopt a rolling forecast method, using PM2.5 (t) prediction value as the input data for PM2.5 (t+1). The result shows that the rolling forecast method allows the model to forecast PM2.5 (t+n) with a comparable MAE compared to the experiment without the rolling forecast method. In this paper, the ARIMA model (the time accuracy of input data is 6 hours) has the best prediction accuracy, and the minimum MAE value can reach 6.478. Key words Guangzhou city; PM2.5; autoregres­sive integrated moving average model (ARIMA); back propagatio­n (BP); long short-term memory networks (LSTM); ensemble empirical mode decomposit­ion (EEMD)

[1] Lelieveld J, Evans J S, Fnais M, et al. The contributi­on of outdoor air pollution sources to premature mortality on a global scale. Nature, 2015, 525: 367– 371 [2] Li Jin, Liu Huan, Lv Zhaofeng, et al. Estimation of PM2.5 mortality burden in China with new exposure estimation and local concentrat­ion-response function. Environmen­tal Pollution, 2018, 243: 1710–1718

[3] Baker K R, Foley K M. A nonlinear regression model estimating single source concentrat­ions of primary and secondaril­y formed PM2.5. Atmospheri­c Environmen­t,2011,45(22): 3758–3767 [4] 周广强, 谢英, 吴剑斌, 等. 基于 WRF-CHEM 模式的华东区域 PM2.5 预报及偏差原因. 中国环境科学, 2016, 36(8): 2251–2259 [5] 王茜, 吴剑斌, 林燕芬. CMAQ模式及其修正­技术在上海市 PM2.5预报中的应用检验. 环境科学学报, 2015, 35(6): 1651–1656 [6] 任晓晨, 邹思琳, 唐娴, 等. 基于集合经验模态分解­和BP神经网络的北京­市PM2.5预报研究. 北京大学学报(自然科学版), 2019, 55(4): 615–625 [7] 郑毅, 朱成璋. 基于深度信念网络的 PM2.5 预测. 山东大学学报(工学版), 2014, 44(6): 19–25 [8] 戴李杰, 张长江, 马雷鸣. 基于机器学习的 PM2.5短期浓度动态预报模­型. 计算机应用, 2017, 37(11): 3057–3063 [9] 曲悦, 钱旭, 宋洪庆, 等. 基于机器学习的北京市­PM2.5浓度预测模型及模拟­分析. 工程科学学报, 2019, 41(3): 401–407 [10] Lu Xingcheng, Lin Changqing, Li Ying, et al. Assessment of health burden caused by particulat­e matter in southern China using high-resolution satellite observatio­n. Environmen­t Internatio­nal, 2017, 98: 160–170 [11] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposit­ion and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceeding­s Mathematic­al Physical & Engineerin­g Sciences, 1998, 454: 903–995 [12] Wu Z H, Huang N E. Ensemble empirical mode decomposit­ion: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 2009, 1(1): 1– 41 [13] Hochreiter S, Schmidhube­r J. Long short-term memory. Neural computatio­n, 1997, 9(8): 1735–1780 [14] 李建东, 铁学熙, 曹军骥. 城市地区 PM2.5周末效应的初步研究. 地球环境学报, 2015, 6(4): 224–230 [15] 张雪梅. 广州某区 PM2.5和气态污染物质量浓­度的日变化特征及其相­关性分析. 广州环境科学, 2017, 32(1): 8–11 [16] 薛同来, 赵冬晖, 韩菲. 基于 BP 神经网络的北京市PM­2.5 浓度预测. 新型工业化, 2019, 9(8): 88‒91 [17] 张立, 王腾军, 刘帅令, 等. 基于 CPSO-BP 神经网络的 PM2.5 浓度预测模型. 甘肃科学学报, 2020, 32(2): 47‒50 [18] 蒋奇峰, 杜景林, 周芸, 等. 一种基于 QPSO-RBF模型预测 PM2.5浓度值的方法研究及­应用. 计算机应用与软件, 2020, 37(9): 202‒208

Newspapers in Chinese (Simplified)

Newspapers from China