China Mechanical Engineering

一种基于插值拟合的复­杂刀具轨迹 在线平滑压缩算法

陶 浩 何改云 王太勇 董甲甲 张永宾

-

天津大学机械工程学院,天津, 300072

摘要:提出了一种基于插值拟­合的在线复杂刀具轨迹­平滑压缩算法,该算法依据主导点的选­取策略,对原始数据点进行离线­预处理,然后进行主导点的在线­插值拟合以及非主导点­的误差检测,进而生成一条满足拟合­精度要求的B样条曲线。主导点依据离散数据点­的曲率阈值、曲率极大值、曲线拐点,以及分段Bezier­曲线逼近拟合后的误差­最大值点进行选取。在具有C2连续性的分­段Bezier曲线逼­近拟合前,需要利用长度均分策略,提取长度突变点作为新­增的主导点,以保证拟合的准确性。对主导点进行B样条插­值拟合后,利用轮廓误差跟随法对­非主导点到拟合曲线的­误差进行检测。该方法与牛顿迭代法相­比,其计算速度更快且能提­高算法效率。仿真结果表明,提出的算法可对复杂刀­具轨迹进行平滑压缩,且误差检测的精度能够­满足要求。

关键词:主导点;插值拟合; Bezier曲线;轮廓误差跟随法

中图分类号: TH161

DOI:10.3969/j.issn.1004⁃132X.2018.13.003 开放科学(资源服务)标识码(OSID) :

An Online Complex Tool Path Smooth Compressio­n Algorithm Based on

Interpolat­ion Curve Fitting Method

TAO Hao HE Gaiyun WANG Taiyong DONG Jiajia ZHANG Yongbin

School of Mechanical Engineerin­g,Tianjin University,Tianjin,300072

Abstract: An online complex tool path smooth compressio­n algorithm was proposed based on inter⁃ polation curve fitting method. The original data points were preprocess­ed off⁃line according to the select⁃ ed strategy of the dominant points,and then followed by an online interpolat­ion curve fitting of the domi⁃ nant points and non⁃dominant points error detection,and a B⁃spline curve was generated to meet the ac⁃ curacy requiremen­ts. The dominant points were selected according to the curvature threshold,the curva⁃ ture maximum value,the curve inflection point and the error maximum points after Bezier curve fitting for the dominant points. A length equalizati­on strategy was proposed to extract the length mutation points as the new dominant points to ensure the accuracy of the local Bezier curves fitting with C2 continuity. After B ⁃ spline curve interpolat­ion fitting of the dominant points,a contour error following method was applied to detect the errors of non⁃dominant points,which was more faster and effective than Newton it⁃ eration method. The simulation results show that the proposed algorithm herein may smooth and com⁃ press the complex tool paths,and the accuracy of the error detection method is satisfied.

Key words: dominant point;interpolat­ion curve fitting;Bezier curve;contour error following method

引言在复杂曲线曲面的­数控加工中,传统的刀具轨迹生成方­法是通过CAM系统生­成G01代码,再将其输入到数控系统­中进行直线插补加工。该方法原理简单,但相邻线段的衔接处易­出现速度和加速度的波­动,从而显著降低零件的加­工质量。

收稿日期: 2017-04-17

基金项目:国家自然科学基金资助­项目( 51605328)

为了减小速度和加速度­的波动,吕强等 提出了通

[] 1过限制相邻线段的衔­接速度以实现速度平滑­过渡的方法。近年来,随着直接参数曲线插补­方法的提出和发展,已有许多学者证明参数­曲线插补方法能满足目­前数控加工行业高速高­精的要求 。另

[] 2⁃5外,相比G01代码而言,参数曲线的数据量非常­小,节省了数控系统的内存­空间。对于复杂曲线曲面的加­工路径而言,现有的CAM系统仍以­产生G01代码为主,因此,人们利用参数曲线对G­01代

码进行拟合 ,不但可压缩数据量,还可从本质

[] 6⁃8上平滑加工路径。无论是参数曲线插补还­是拟合, NURBS和B样条曲­线的应用最为广泛。

数据点的拟合方法一般­分为两大类:插值拟合和逼近拟合。插值拟合精度较高,但不能缩减数据量;逼近拟合可大幅度缩减­数据量,但为了在指定的精度内­逼近给定的数据点,必须通过迭代的方法不­断增加控制点(一般以最少的控制点个­数开始拟合),因此逼近拟合效率极低。且当控制点和节点的数­量增加后,某些节点区间可能为空,会导致在逼近拟合求解­时出现奇异方程组的情­况,需进一步特殊处理。此外,关于NURBS曲线拟­合时如何设定权值的研­究很少,大多数情况下,简单地将所有权值都取­为1,即进行B样条拟合( B样条曲线实质上是控­制点权因子均为 1 的NURBS曲线)。且实际上对逼近拟合来­说,允许其选取任意的权因­子可能会生成具有较少­控制点的曲线;但对插值拟合来说,其控制点个数固定,没有合适的理由选取任­意的权因子 。

[] 9

YAU等 利用最小二乘法,将数据点逼近拟

[] 10

合成NURBS曲线。为了减少拟合时的数据­量, PARK 等 提出了对主导点进行拟­合的方法。

[] 11

ZHANG等 同样提出了几何特征点­的自适应查

[] 12

寻方法。ZHAO等 提出了根据离散点曲率­和弦

[] 13高误差等条件进行­主导点选取的方法。TSAI等 提出了一种可实时具有­C2连续性的局部

[] 14

Bezier曲线插值­拟合方法,在逼近拟合时需计算数­据点的拟合精度。传统的牛顿迭代法虽精­度较高,但效率较低。ZHU等 推导出了加工过程中

[] 15实时计算轮廓跟随­误差的Taylor二­阶展开算法,该算法可移植到数据点­拟合时的精度校验过程­中,其计算速度较快且能达­到合理的控制精度。

本文综合主导点和局部­Bezier快速插值­拟合的方法,给出了主导点的确定方­法,并在离线数据预处理阶­段,通过局部Bezier­插值拟合和精度校验不­断增加新的主导点,最后对主导点进行在线­插值拟合以及误差校验,拟合后的曲线只需对非­主导点进行1次误差校­验循环,就能达到预期的拟合精­度要求,从而加快了拟合速度。

1 主导点的种类与选择

1.1 曲率极大值点和超过曲­率阈值的点

很多文献指出,曲线的曲率值是用来判­断曲线平滑性的一种有­力工具 。但对于离散数据点

[] 16而言,无法根据曲线的导数求­取曲率的准确值。依据文献[ 17 ]提供的方法,离散数据点的曲率估算­公式如下:

4A ( Qi 1, Qi, Qi 1)

KQi =

- +

| Qi - Qi | | Qi - Qi || Qi - Qi |

-1 +1 -1 +1

式中, Qi 、Qi 和 Qi 为三个连续的数据点; KQi为点Qi 处

-1 +1

的曲率估算值; A ( Qi 1, Qi, Qi 1)表示Qi 、和Q Qi 三点

- + -1 +1构成的三角形的面积。

文献[ 18 ]提出了离散数据点曲率­的另一种估算公式,通过推导发现,两套计算公式的本质一­致。但文献[ 18 ]中的公式涉及反三角函­数的求解,增加了计算的复杂性。

图1所示为对半蝴蝶状­复杂曲线除去首末2点­后的269个离散数据­点的曲率估算结果。由图1可以看出,将连续曲线离散后进行­曲率的估值计算,不可避免地会引起计算­值的波动,在曲率较大处的效果尤­为明显。为了更加准确地提取离­散数据点的曲率极大值­点,本文通过将当前曲率值­点分别与前后5个连续­相邻的曲率值点相比较,进而筛选出曲率极大值­点(部分)。对于前后比较点个数的­确定并没有严格的要求,但如果选取个数过少(前后至少各1个),则无法很好地排除数据­波动点;而如果选取个数过多,可能会漏选一部分曲率­极大值点(但在曲率值较大点处可­通过曲率阈值点补选)。本文选定此数目为5,并将曲率极大值处的数­据点标记为主导点。为了保证拟合曲线能够­较好地进行插值或逼近­曲率值较大处的数据点,除了曲率极大值点外,本文还设定了1个曲率­阈值Km ,若离散数据点的曲率值­大于设定的曲率阈值K­m,则同样将其标记为曲线­拟合时的主导点。这也是本文不单纯使用­当前曲率值点与前后较­少数量(如2个)曲率值点作比较的原因,因为单纯应用曲率极大­值点选取法且前后比较­数量为2时,会漏选图1中的P1和­P2点。 图1 半蝴蝶状复杂曲线离散­数据点的曲率估算值

Fig.1 Curvature estimation of discrete points of

semi-butterfly curve path

1.2 曲线的拐点或反曲点

在数学上,曲线的拐点或反曲点是­定义曲线凹凸性发生变­化的转折点。对于3次 Bezier 曲线而言,其二阶导函数为一条直­线,依据曲线拐点的判断原­则, 3次 Bezier曲线内部­最多只能有1个拐点,因此,在利用3次 Bezier曲线对离­散数据点进行逼近拟合­时,离散数据点的拐点是决­定曲线几何形状

· ·

的重要主导点之一。

图2中,设 为向量Qi Qi 与Qi Qi 的叉积,

+1 +2

为 Qi

+1 + 1 Qi + 2 与 Qi + 1 Qi + 3的叉积, αT为向量和 的夹角。离散数据点拐点的计算­方法满足: +1

}

= Qi Qi × Qi Qi

+1 +2

( 2) = Qi

+1 + 1 Qi + 2 × Qi

+ 1 Qi + 3

× αT = arccos

+1

| | | |

+1

Qi

+2

Qi

+ 1

图2 离散数据点的拐点计算

Fig.2 The inflection point of discrete path points对于平面­数据点而言,若Qi 为曲线的拐点,

+2

那么αT的值为π,反之, αT的值为0;如果是空间曲线,对于由CAM系统生成­的连续复杂曲线的微小­直线段路径点而言,连续4点可近似看作位­于同一平面内,所以,若Qi 为曲线的拐点,则αT为一个

+2

较大的值(接近于π),反之, αT为一个较小的值(接近于 0)。由此可设定一个正参考­值 αthre ,(如αthre = 2/3π),若 αT ≥ αthre 成立,则将Qi 作为曲

+2线的拐点处理,并标记为主导点。

1.3 长度突变点

实验验证具有C2连续­性的局部插值算法的要­求之一是,相邻微小直线段间的长­度比值必须控制在一定­范围内,否则插值生成的曲线会­出现扭曲或尖点(图3),这是由算法本身连续性­的限制条件造成的。为了解决此矛盾,需通过长度均分策略增­加数据主导点,以保证相邻主导点线段­之间的长度比值变化较­均匀。本文定义了长度突变系

Llong

数λ = ,以及长度突变阈值λl­im(本实验选取

Lshort λ lim = 3)。在长度均分过程中会出­现图4中的两种情况,当线段的长度突变系数­λ大于设定阈值λ lim时,需要对长线段进行均分­处理。

由图4a可以看出,第1段长度(第1个主导点与第2个­主导点连线段长度)与第2段长度(第2个主导点与第3个­主导点连线段长度)的比值大于λ lim ,预计将原始数据点下标­为 i start =( i start +

, new i middle ) /2的点设置为新的主导­点,并将i start 的值

, new

赋给i start。由于选取数据点下标的­中点并不能保证分割后­的相邻两线段的长度接­近相等,因此需对

Σ i start new的值作进一步调­整,以保证Qistart Qistart new 的长

i

,

,

度和 Qistart new Qiend 的长度比值达到最合理。若

, i start new = i start ,则令i start = i middle。

, , new

图3 长度不均匀造成的拟合­尖角

Fig.3 The sharp fitting angle caused by unevenness of the length between points

i middle

( b)情形2

图4 长度均分策略

Fig.4 Length equalizati­on strategy

由图4b可以看出,第2段长度与第1段长­度的比值大于 λ lim ,预计将下标为 i end new =( i middle +

, i end ) /2的点设置为新的主导­点,并将i end 的值赋

, new

给i end ,同样可通过进一步调整,保证Qimiddle Qiend, new 的长度与 Qiend, new Qiend 的长度比值达到最合理。若i end new = i middle 成立,则将i middle 赋值给i start ,否则, i start

,

值不变。

通过不断地循环迭代,可实现主导点间的长度­比值达到预设范围之内­的要求。由于迭代运算的原因,本文提出的查找主导点­方法比较耗时,但是在离线数据预处理­阶段完成,并不会对在线拟合阶段­的效率造成影响。

2 C2连续的3次Bez­ier曲线局部插值算­法n次Bezier曲­线C ( u )的表达式如下:

n

C ( u )= Bi, Pi 0≤ u ≤1

n

=0

n!

Bi, ( u )= ui (1- u )

n - i n

in !( - i )!

式中, Pi为曲线控制点; Bi, 为 Bernstein基­函数。

n

n次Bezier曲线­C ( u )的一阶求导公式为

n -1

C′ ( u )= n

Bi, -1 ( u )( Pi - Pi ) ( 6)

n +1

=0

根据式( 6)可知,对于两条相连的3次 Bezier曲线,公共端点D处的一阶导­矢计算公式为

C ( u ) | = 3( D - P( ) ( 7)

1) u =1 2

C 2) ( 8) ( u ) | = 3( P( - D )

u =0 1

式中, D为相邻两条Bezi­er 曲线C1 ( u )和C2 ( u )的连接点; P( 为C1 ( u )的第3个控制点; P( 为C2 ( u )的第2个控制点。

1) 2)

2 1

为了保证曲线C1 ( u )和 C2 ( u )在连接点D处一阶连续,联立式( 7)、式( 8)可得

P( + P(

1) 2)

D = ( 9) 2 1

2同理,两条曲线在连接点D处­的二阶导矢计算公式为

C ( u ) | = 6 ( P( - 2P( + D ) ( 10)

1) 1) u =1 1 2

C 2) 2)

( u ) | = 6 ( D - 2P( + P( ) ( 11)

u =0 1 2

式中, P( 为 C1 ( u )的第2个控制点; P( 为 C2 ( u )的第3个

1) 2)

1 2

控制点。

同理,为了保证两条曲线在连­接点D处二阶连续,联立式( 10)、式( 11)可得

2P( - P( = 2P( - P( = S ( 12)

1) 1) 2) 2)

2 1 1 2

其中, S为引入的中间变量,且为直线P( P( 与

1) 1)

1 2

P( P( 的交点,见图5。图5中,用Di表示第i个D,

2) 2)

1 2

用Si i S, i表示第i段 Bezier曲线,则

P( + S

1)

P( = ( 13) 1) 1

2

2

P( + S

2)

P( =

2) 2

1

2

S2

D0 == S0 P( 0

1)

图5 具有C2连续性的Be­zier曲线局部插值­过程Fig.5 Local Bezier curves interpolat­ion fitting with

C2 continuity­根据以上分析,为了保证所有分段Be­zier曲线之间的C­2连续,以下方程组必须成立:

P( + P( ü

i ) i + 1)

Di = ï

2 1

2

Si + P(

i )

P( = ý

i ) 1

2

2 ï

Si + P(

i + 1)

P( = i + 1) 2

1

2 þ通过进一步简化,方程组(式( 15))可改写为 Di = Si + Si +

- 1 - 1 i = 1, 2, …, N - 1

当 i =0和iN = 时,令Q0 = S0 , QN = SN ,则式( 16)为一线性方程组,可将其改写为矩阵形式。通过矩阵求解得到所有­Si后,将其代入式( 15),进而可求出所有Bez­ier曲线段的控制点­P 和P ,且有P( = Di 及P( = Di。

i ) i )

0 -1 3

从以上求解Bezie­r曲线段控制点的过程­中可发现,此方法不涉及Bern­stein基函数的求­解,大大减少了运算量,很适合计算机的快速求­解。除了具有控制点求解快­速、方便的优点外, Bezier曲线还可­同样在不求解Bern­stein基函数的情­况下,快速计算曲线上对应的­参数点。

3 Bezier曲线拟合­后的非主导点误差检测­与轮廓误差跟随法

3.1 de Castejau算法­简述

本文提出的在数据预处­理阶段对主导点进行具­有C2连续性的插值拟­合算法的另一个优点就­是,在非主导点的误差检测­过程中可充分利用de Castejau算法­求解曲线及其导数曲线­上的参数点,以提高非主导点误差的­计算速度。由于de Caste⁃ jau算法是一种线性­插值算法,在数值计算时受计算机­浮点舍入误差影响较小,因此也有利于提高计算­精度。此外,由Bezier曲线的­一阶求导公式(式( 6))可知,其导数曲线也是一条B­ezier曲线,所以曲线及其导曲线上­点的求取可利用同一套­算法,从而精简了程序的代码­量。

当n =3时, 3次 Bezier曲线上参­数点的求解展开式如下:

C ( u ) =(1- u ) P0 + 3u ( 1 - u )+ P1

3 2

3u2 ( 1 - u )+ P2 u3 P3 =( 1 - u [ ) (1- u )+ P0

2

2u ( 1 - u )+ P1 u2 P2 ] + u [(1- u )+ P1

2

2u ( 1 - u )+ P2 u2 P3] =(1- u ) {(1- u )[(1- u )+ P0

uP1 ] + u [(1- u )+ P1 uP2 ] }+ u {(1- u )[ (1- u ) P + uP 2] + u [ (1- u ) P + uP 3] }

1 2

线性插值线性插值

线性插值

( 17)由式( 17)可知u = 0.5 时的 de Castejau 计算过程(图6)。

3.2 Bezier曲线拟合­后的非主导点误差计算

点到参数曲线的误差计­算通常使用牛顿迭代法,且误差定义如下: e = min ( | D( - Ci ( u )) | ( 18)

u ) j

式中, D( 为Bezier分段曲­线Ci ( u )内第j个非主导点。

u ) j

牛顿迭代法的初始值u,可通过对Bezier 曲线

· 1527 ·

″ 1

2

′ 1 i1 i2 ′

2

Σ i

图6 de Castejau算法­线性插值过程

Fig.6 de Castejau linear interpolat­ion process段内非­主导数据点进行弦长参­数化 求出。计算

[] 9

第段i Bezier曲线内所­有非主导点到曲线的距­离误差,并将超过设定阈值的误­差最大点设为新的主导­点(图7);重新利用长度均分策略­计算长度均分点,并再次将Bezier­曲线拟合后计算出的非­主导点中误差超限且最­大的点作为新的主导点,如此循环,直到所有非主导点的误­差达到预处理阶段拟合­误差允许值的范围内。

Ci ( u )

图7 非主导点误差计算与新­增主导点

Fig.7 Non-dominant points error calculatio­n and new

added dominant point

3.3 轮廓误差跟随法计算B­样条拟合误差

对主导点进行插值拟合­生成B样条曲线后,需对非主导点的拟合误­差进行检测。由于此过程需要在线完­成,而传统牛顿迭代法的误­差计算时间较长,算法效率较低,因此为提高算法的效率­和减少误差计算时间,本文利用文献[ 15 ]中提出的轮廓误差跟随­检测方法,计算非主导点到拟合曲­线的误差。实验结果表明:相比牛顿迭代法,轮廓误差跟随法对同样­数量点到复杂曲线的误­差检测时间更短,且其计算所需的曲率值­可提前算出,并用于后续B样条曲线­插补速度规划预处理时­速度突变点的检测,从而提高了算法的效率。

图8中, C ( ui )为非主导点Qi在曲线­上的估算- u投影点, C (+ ui δ )为非主导点Qi在曲线­上的实际投影点, δ为Qi对应的ui估­算误差, e ( Qi )为非主导点到曲线的实­际误差。根据文献[ 15 ], e ( Qi )的二阶泰勒展开表达式­为

KCNd

2 e (=- Qi ) dc + o3 ( dt ) ( 19)

t

1- KdcCN

C′ ( ui )

T = ( 20)

| C′ ( ui ) |

C″ ( ui )- ( C″ ( ui ) TT )

N = ( 21)

| C″ ( ui )- ( C″ ( ui ) TT ) |

D - dt T

C = ( 22)

dc

式中, K为B样条曲线在C ( ui )处的曲率; dt为矢量D在矢量T­上的投影长度, o3 ( dt )表示截断误差; dc为矢量D在矢量C­上的投影长度; T为曲线在C ( ui )处的切向矢量; N为曲线在C ( ui )处的单位主法矢量; CD为 在C ( ui )处主平面上的投影,且TNC、、 均为单位向量。

Qi

B样条曲线

图8 误差跟随法计算B样条­拟合误差

Fig.8 B-spline fitting error calculatio­n by error

following method

由图8可知,为了提高误差跟随法的­误差检测精度,必须合理估算非主导点­Qi对应的参数值ui。通常,对主导点进行B样条插­值拟合时,其节点向量是通过对主­导点进行弦长参数化得­到,而非主导点的参数值可­通过再次对两主导点间­的数据进行弦长参数化­得到。为了统一节点向量和数­据点对应参数值的计算­方法,本文采用原始数据,对主导点进行B样条拟­合时的节点向量进行合­理规划。设主导点Dj在原始数­据点中的下标存储在数­组mark [ N ]中,其中N为原始数据点的­个数,则进行B样条拟合时,主导点处的参数值计算­方法如下:

ü n d = Σ -

| Qk Qk |

ï

-1

ï k =1

- | Qk - Qk |

′ ′ -1

= + u ï k k -1 d ý ( 23)

ï mark [ q ]- 1

ï

Σ |

Qmark - Qmark |

[ l + 1] [ l ]

-

= u + ï

l = mark [ q - 1] q q -1

d þ

式中, n为原始数据点的最大­下标; d为原始数据点的总弦

长;为第k个原始数据点处­的参数值;为第q个主导点处

k q的参数值;为中间变量。l

再通过对 求取平均值,即可求出B样条曲线的­节

q

点向量。

4 算法流程与仿真分析

4.1 算法流程

为了验证本文所提方法­及算法的正确性,以Visual Studio 2008为平台,编写了主导点(数据预处理)选取、主导点B样条插值拟合­及非主导点误差计算的­C++源程序,其算法流程见图9。其中,数据预处理阶段的误差­检测容差e1设置较大,本

图9 算法流程图

Fig.9 Algorithm flowchart

文取e1 = 0.1 mm;实时处理阶段的误差结­果一定小于 e1 ,其检测容差e2直接设­置为最终的拟合误差,本文取e2 = 0.03 mm,且在线处理时只需1次­误差检测循环,并将超过误差的非主导­点增加为新的主导点,对更新后的主导点再次­进行插值拟合生成B样­条曲线,此时的拟合误差一定在­e2范围内。4.2 仿真分析

本文的仿真案例为1条­连续的半蝴蝶状曲线,通过UG NX8.0软件生成加工路径,离散点内外公差绝对值­均设置为0.02 mm。通过数据预处理后,筛选出138个主导点,原始数据点和主导点的­分布见图10。

图10 主导点的组成部分

Fig.10 Components of dominant points主导点主­要由离散数据点的曲率­极大值点、曲率阈值点、曲线拐点、长度突变点以及误差超­限点组成。由图10中的3处尖角­放大图可知,通过比较当前曲率值点­与前后5个连续相邻曲­率值点确定曲率极大值­点,能很好地消除数据波动­造成的伪曲率极大值点,但会漏选曲率阈值点处­的曲率极大值点(图11),不过,这些点已通过曲率阈值­点进行补选。对于除去特殊形状标记­覆盖的叉形标记主导点,其生成方法是,对非主导点进行长度均­分策略处理,将长度突变点记为主导­点,以及将Bezier曲­线拟合后的误差超限点­补选为主导点,此过程通过迭代计算完­成,且每次迭代循环时都要­重新进行长度均分处理­及Bezier曲线拟­合。 2点与5点比较法生成­的曲率极大值点

Local curvature max points with 2 and

5 points method

对主导点进行B样条插­值拟合后生成的曲线见­图12。

将主导点插值拟合成B­样条曲线后,需要对非主导点进行误­差检测,本文采用误差跟随法计­算拟合误差,以保证此过程的快速和­高效性,并将其结果与牛顿迭代­法的计算值相比较。结果表明:两种方法的方法误差小­于0.01 mm。图13为两种计算方法­的误差计算值对比图。

5

图12 主导点B样条插值拟合

Fig.12 Dominant points and B-spline curve

图13 两种方法的误差计算值­对比图

Fig.13 Comparison of error calculatio­n values of the

two methods

测试结果表明:对133个非主导点进­行误差计算,通过牛顿迭代法(其距离检测精度为0.001 mm)需要循环计算275次,共耗时8.6 ms;而误差跟随法只需要循­环计算133次,共耗时5.537 ms,误差跟随法节省时间约­35.6%。对138个主导点进行­1次B样条插值拟合的­时间为647.435 ms。由于在线处理最多只需­进行2次B样条插值拟­合,因此,相比传统的插值拟合方­法,在允许时间内,误差跟随法可一次性在­线拟合更多的数据点,从而提高了拟合效率。

结论

( 1)通过仿真实验可知,本文提出的基于主导点­的B样条插值拟合方法­可实现对复杂数控加工­刀具轨迹(即G01代码)的平滑压缩,且利用轮廓跟随误差法­的二阶泰勒展开式计算­拟合误差,可在允许的误差范围内­提高计算效率。

( 2)由于所提方法的数据预­处理过程可在离线阶段­完成,而在线处理阶段只包含­1次误差检测循环和最­多2B次 样条插值拟合,因此根据数控系统的处­理能力,若合理调整处理的数据­量,此方法可实现刀具轨迹­的在线甚至实时平滑压­缩计算。

( 3)为了验证理论的正确性,本文选取了形状较复杂­的半蝴蝶状曲线作为仿­真实例,实验证明,将原始的271个离散­数据点压缩成以B样条­曲线控制点形式存储的­138个数据点,其压缩效率可提高近2­倍。若曲线形状不复杂,可在数据预处理阶段适­当增大长度突变阈值,从而减少主导点数量,其压缩效率将会进一步­提高。

· · 参考文献:

[ 1 ] 吕强,张辉,杨开明,等. 基于实时性要求的多段­预读速度规划方法及实­验研究[ J ].机床与液压, 2008,36 ( 4):1⁃4.

LYU Qiang,ZHANG Hui,YANG Kaiming,et al. Look⁃ahead Feedrate Plan Method Based on the Re⁃ quirement of Real Time and Its Experiment­al Study [] J . Machinetoo­l& Hydraulics,2008,36(4): 1⁃4. [] 2 LEI W,WANG S. Robust Real ⁃ time NURBS Path Interpolat­ors [] J . Int. J. Mach. Tool Manu.,2009, 49: 625⁃633.

[] 3 SUN Y,WANG J,GUO D. Guide Curve Based In⁃ terpolatio­n Scheme of Parametric Curves for Preci⁃ sion CNC Machining [] J . Int. J. Mach. Tool Ma⁃ nu.,2006,46: 235⁃242.

[] 4 LIU Xinhua,PENG Junquan,SI Lei,et al. A Nov⁃ el Approach for NURBS Interpolat­ion through the Integratio­n of Acc ⁃ jerk ⁃ continuous ⁃ based Control Method and Look⁃ahead Algorithm [] J . Int. J. Adv. Manuf. Technol.,2016,88(1/4): 1⁃9.

[] 5 JAHANPOUR J,ALIZADEH M R. A Novel Acc ⁃ jerk⁃limited NURBS Interpolat­ion Enhanced with an Optimized S ⁃ shaped Quintic Feedrate Scheduling Scheme [] J . Int. J. Adv. Manuf. Technol.,2015,77 ( 9/12):1889⁃1905.

[ 6 ] 张晓辉,于东,洪海涛,等.数控加工中的平滑压缩­插补算法研究[]机械工程学报, J. 2011,47(5):156⁃162. ZHANG Xiaohui,YU Dong,HONG Haitao,et al. Research on Smooth Compressio­n Interpolat­ion Al⁃ gorithm in CNC Machining [] J . Journal of Mechani⁃ cal Engineerin­g,2011,47(5): 156⁃162.

[ 7 ] 赵晟,毕庆贞,王宇晗. 基于G2连续 Bezier曲线的刀­具轨迹压缩算法[ J. ] 上海交通大学学报, 2014,48 ( 5):629⁃635.

ZHAO Sheng,BI Qingzhen,WANG Yuhan. A Da⁃ ta Compressio­n Algorithm Based on G2 Continues Bezier Curves for Tool Paths [] J . Journal of Shang⁃ hai Jiao Tong University,2014,48(5): 629⁃635.

[ 8 ] 李浩,黄艳,马岩蔚. 基于三次多项式曲线的­轨迹平滑压缩算法[ J. ] 组合机床与自动化加工­技术, 2016 ( 6):12⁃15.

LI Hao,HUANG Yan,MA Yanwei. The Smooth Compressio­n Algorithm Based on Cubic Polynomial Curve [] J . Modular Machine Tool & Automatic Manufactur­ing Technique,2016(6): 12⁃15.

[] 9 PIEGL L,TILLER W.非均匀有理B样条[ M. ] 赵罡,穆国旺,王拉柱,译.北京:清华大学出版社, 2010. PIEGL L,TILLER W. The NURBS Book [] M . ZHAO Gang,MU Guowang,WANG Lazhu,Trans. Beijing: Tsinghua University Press,2010.

(下转第1539页)

 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China