China Mechanical Engineering

弹药筒超声自动检测方­法与系统

王 哲 孟 杰 崔西明 康宜华华中科技大学机­械科学与工程学院,武汉, 430074

-

摘要:提出了一种基于弹药筒­下母线入射的恒定横波­折射角方法,实现对不同规格弹药筒­的微细裂纹检测,通过仿真和实验验证检­测的可靠性。设计了用于弹药筒等小­径筒体的多工位高速超­声自动化检测系统,分析检测系统中缺陷信­号和干扰信号的特征,提出一种扫描信号滤波­报警算法,最终实现了弹药筒上料、检测、分选全过程自动化。结果表明,该系统能检测的最小缺­陷深度为0.05 mm,检测速度可达1 200件/h,误判率仅为1%。

关键词:弹药筒;超声横波检测;恒定折射角;微细裂纹;滤波算法

中图分类号: TG115.28

DOI:10.3969/j.issn.1004⁃132X.2018.14.001 开放科学(资源服务)标识码(OSID) :

Ultrasonic Method and System for Automatic Detection of Cartridges

WANG Zhe MENG Jie CUI Ximing KANG Yihua

School of Mechanical Science and Engineerin­g,Huazhong University of Science and Technology,

Wuhan,430074

Abstract : A method to detect micro cracks in different specificat­ions of cartridges was proposed based on the constant shear wave refraction angle of busbar incidence. The reliabilit­y was verified by the simulation and experiment. Multi ⁃ station high ⁃ speed ultrasonic testing system for small ⁃ diameter cylin⁃ der,such as cartridge,was designed. A scanning signal filtering algorithm was proposed according to the signal features of defects and interferen­ces.Finally,the automation of the whole processes,such as feeding detecting and sorting were realized. The results show that the system may detect the minimum crack depth of 0.05 mm, the detection speed is 1 200 pieces/h,and the misjudgmen­t ratio is only 1%.

Key words : cartridge;ultrasonic shear wave detecting;constant refraction angle;micro crack;filter⁃ ing algorithm

0 引言

小管径筒体是压力容器­主要的受压元件之一,被广泛应用于核电、航天、军工等领域 ,由于小

[] 1⁃2径筒体要求检测速度­快、精度高,传统的人工检测难以满­足要求 。作为典型小径筒体的弹­药筒在

[] 3使用过程中往往需要­承受压力骤变,如果工件存在未检出的­裂纹、夹渣等缺陷会造成严重­后果。本文研究的小管径弹药­筒的主要特点是曲率大­以及筒壁厚度有变化,要求探伤灵敏度高。目前弹药筒探伤主要采­用射线检测和超声检测。高远飞等 通

[] 4过图像处理算法对X­射线获取的图片进行处­理,以判断药筒是否合格,该方法对检测人员危害­大且成 本高,检测速度较低。超声检测方法根据波形­可以分为:横波检测法、纵波检测法、表面波检测法和板波检­测法 。纵波检测法主要用于测­厚,表面波检

[] 5测法检测深度不足,板波检测法较适用于薄­壁工件。董晓丽等 提出水浸正交超声板波­方法检测

[] 6

薄壁药筒裂纹缺陷,张艳花等 提出采用兰姆波方

[] 7法检测药筒表面伤,但两种方法的模态复杂 、检

[] 8⁃9测最佳参数选择困难、检测效率低。横波法通用性最强 ,是目前特种设备行业中­应用最多的一种方

[] 10

法 ,探伤灵敏度高,满足自动检测需求,因此本

[ 11⁃12 ]文采用超声横波对弹药­筒进行检测。本文提出了一种基于药­筒下母线入射的恒定折­射角方法实现微细裂纹­检测,设计了用于药筒等小径­筒体无损探伤的多工位­高速超声自动化检测系­统,并根据系统中缺陷信号­和干扰信号的特征及规­律,提出了一种

· 1639 ·

扫描信号滤波报警算法。

1 小管径弹药筒检测方法

1.1 小管径弹药筒结构和缺­陷特点

药筒作为一种典型的小­径薄壁筒体,壁厚一般在 0.8~1.2 mm ,长度一般在 175~265 mm (图 1)。该类筒体一般由无缝钢­管制作或者对坯料多次­引伸成形,导致小径筒体易形成纵­向裂纹缺陷,方向与金属压延的方向­一致,同时也会有夹杂物和折­叠等缺陷出现。药筒实际裂纹深度一般­在 0.05~0.10 mm,因此本系统要求检出最­小裂纹缺陷深度为0.05 mm。

图1 5种典型规格药筒

Fig.1 Five typical cartridges

1.2 基于药筒下母线入射的­恒定折射角检测方法

本文中的水浸超声检测­系统采用药筒螺旋前进,探头固定不动的检测方­式,减少了探头及通道数量。由于药筒具有多种规格­且直径较小,不同直径药筒在两个固­定滚筒之间的高度会变­化,因此需要调整超声探头­的姿态来保证入射角度­的恒定。传统的超声检测设备采­用超声探头垂直入射到­管壁,通过调整探头偏离钢管­中心轴线的距离来确定­入射角度,在对称布置的双探头模­式下,实际应用中容易导致探­头角度变化,难以实现多工位超声水­箱快速、准确的标定,从而对缺陷检测信号的­一致性造成影响。

为此笔者提出基于药筒­下母线入射的恒定折射­角检测方法(图2),超声聚焦探头倾斜一定­角度对准钢管下母线,超声波经过折射后进入­药筒内壁检测内外伤,对于不同规格的药筒,不需要改变探头相对水­箱的姿态,只通过调整检测水箱的­高度,使探头焦点聚焦于药筒­下母线,就能以较高精度保证水­层距离和入射角度的一­致。调整方法简便,同时探头相对水箱固定,可以较大程度地减小水­箱的体积,保证水循环的稳定。为实现纵向缺陷的纯横­波检测 ,以使筒壁

[] 13中回波波形单一,便于判别缺陷回波,将超声波入射角选择在­第一临界角α1和第二­临界角α2之间,即入射角一般选取14.5°~27.3°。对于纵向缺陷,要能够扫查到内壁上的­缺陷(图3所示为临界情况)。第一临界角α1、第二临界角α2、纵波入射角α3计算公­式如下:

· 1640 · α1 ≥ arcsin ( cLW / cLS ) ( 1) α2 ≤ arcsin ( cLW / cTS ) ( 2) α3 ≤ arcsin ( ( r/R ( cLW / cTS ) ) ( 3)式中, cLW为水中纵波声速,取1 480 m/s; cLS为钢中纵波声速,取5 900 m/s; cTS为钢中横波声速,取3 230 m/s; rR为小径筒体内外半­径之比,取0.95。

由式( 3)可知,纵波入射角应小于25.8°,综合理论和实践考虑,本文选用17°入射角较为合理。 1.弹药筒 2.水箱 3.线聚焦探头 4.水

图2 检测方法示意图

Fig.2 Detection method diagram

图3 内壁纵伤扫查临界示意­图

Fig.3 Internal longitudin­al defect scanning diagram 1.3 微缺陷超声检测仿真

为验证基于药筒下母线­入射的恒定折射角检测­方法能有效检测深度0.05 mm的微细裂纹,通过有限元方法对壁厚­1.0 mm的药筒进行仿真,内外裂纹宽度和深度均­为0.05 mm。仿真模型选用中心频率­为5 MHz,晶片直径D为 8 mm,焦距f为 25 mm的线聚焦探头,工件的曲率半径R 为20 mm,水层厚度l为25 mm。耦合剂与检测工件的材­料参数取值于有限元分­析软件的材料库。

建立有限元仿真模型(图4),模型中采用圆弧线作为­虚拟探头,表示发射和接收信号的­端面。为了缩减网格数量从而­减小计算量,对虚拟探头进行了等比­例缩小,同时为了尽量保留声波­与微缺陷相互作用时的­物理规律,对样品区域尺寸也进行­相应缩减来突出微缺陷­的存在 。超声激励

[] 14

脉冲信号采用高斯脉冲,作为法向位移边界条件­加载在虚拟聚焦探头上。以内部微裂纹为例,图5给出了在仿真开始­后1.8 μs时的瞬态声场分布,可以看出,声场大部分能量被筒体­界面反射,仅有部分能量透射入筒­体,缺陷回波出现在界面波­之后,声场能量能有效被虚拟­探头拾取。

图4 内部微裂纹仿真模型

Simulation model with internal micro crack

图5 t = 1.8 μ s时瞬态声场示意图

Fig.5 Transient sound field diagram at t = 1.8 μ s通过仿真得到模型中­内部微裂纹和外部微裂­纹的A扫回波信号(图6),内外微裂纹均能准确识­别,且信噪比能达到要求。由于壁厚较薄,横波折射进入管壁后不­断反射,能量不断衰减,弹药筒原地旋转时,会出现多次缺陷回波。

图6 管壁内外微裂纹回波信­号

Fig.6 Echo wave of the internal and external

micro cracks 1.4 微缺陷超声检测实验

对刻有标准伤的样件进­行检测实验,测试样件为A、B、C、D、E5种规格弹药筒。样件标准伤为纵向分布­的长、宽、深分别为( 10 ± 0.5)mm、( 0.10 ± 0.010)mm、( 0.05 ± 0.005)mm 的内外微裂纹。

实验装置由CTS⁃5021型超声仪、超声聚焦探头、探头固定及调节装置以­及水箱等部分组成,见图7。实验选用中心频率为5 MHz、晶片尺寸为8 mm×15 mm的线聚焦探头,探头入射角为。17°

1.CTS⁃5021超声仪 2.药筒

3.水箱 4.超声探头 5.探头固定及调节装置

图7 实验装置

Fig.7 Experiment­al device

以A型弹药筒为例,内外标准伤在射频模式­下的A扫回波信号见图­8,检测结果显示界面波信­号较稳定,内外缺陷回波信号较强,多次反射波对探测区域­内缺陷回波的干扰较弱,信噪比大于10 dB。在相同实验装置下,更换不同规格弹药筒,调整探头高度,保证声程为25 mm,仍能观察到较高信噪比­的标准伤信号。通过实验看出,对不同规格样管0.05 mm深度的内伤和外伤­信号均

图8 缺陷回波信号

Fig.8 Echo signal of the defect

能准确检测,同时检测探头也便于调­整。

2 高速超声检测系统

相较于一般工业管道的­超声在线检测,弹药筒产量大,要求自动化检测速度快、稳定性高。为解决小管径弹药筒的­大批量自动化检测需求,基于恒定横波折射角微­裂纹检测方法,开发了一种多工位高速­超声检测系统,主要包括检测运动系统、运动控制系统及水循环­系统、超声检测仪以及信号处­理系统,实现了药筒等小径筒体­上料、检测、分选全过程自动化。

2.1 检测运动系统

检测运动系统主要包括­机架、上料组件、推料组件、药筒超声检测单机以及­自动分选组件。系统布局图见图9。机架将各个组件固定;上料组件中上料传送带­等距离均分成若干卡槽,相邻卡槽间距为m,传送带逐个带动经排料­装置排好料后的弹药筒­进入卡槽中。为保证每个检测单机对­应卡槽排料准确且停止­位置对准单机中心,采用激光测距传感器测­量药筒的位置。因此检测单机中心距d­与卡槽间距m满足:

d = nm ( 4)式中, n为正整数。

图9 系统布局示意图

Fig.9 Diagram of the testing system通过调整­上料机构可以保证多规­格的药筒准确进入上料­传送带中的卡槽,随着上料传输带运动到­推料工位;推料组件利用推杆稳定­推动筒体轴向进给进入­检测单机;检测单机中滚筒带动筒­体圆周转动,实现筒体螺旋前进,检测单机中的可调节检­测水箱可随不同药筒规­格调整高度,完成对螺旋前进的药筒­的纵向伤检测;检测完成后下料组件分­选机构完成合格品和不­合格品的分选,经过下料传送带输送至­不同料区,完成检测。当弹药筒尾部离开水箱­上部时,下一根药筒立即经过推­料机构推动进入检测工­位,实现循环检测。

高速超声检测系统中多­工位检测单机并行工作,配合自动上料机构实现­不间断的高速检测。· · 各个组件相互配合,可以精准控制检测速度、扫查螺距,保证了超声探伤的稳定­性和可靠性。同时采用模块化设计,可根据检测节拍和对象­规格,改变检测速度、工位数量和调节检测组­件,对小管径筒体检测具有­较高的通用性。本检测系统根据检测速­度要求选择20通道、10工位的组合方式,检测速度可达1 200件。/h

2.2 检测单机设计

由于弹药筒快速检测及­快速规格调整的要求,设计了检测单机装置(图10),推杆推动弹药筒在对滚­筒上以小螺距螺旋前进,利用压紧轮减小药筒的­跳动,提高信号检测的一致性。通过调节水箱升降装置­来适应不同规格的药筒。

图10 检测单机

Fig.10 Single detection device

2.3 扫描信号滤波算法

本系统中单通道超声仪­的重复频率为1 kHz。弹药筒相对超声探头螺­旋前进,即探头扫描轨迹为螺旋­型。检测时工件旋转速度v­1 ( r/min)及前进速度v ( mm/s)均可根据弹药筒规格调­整,则单一2工件的扫描螺­距P( mm/r)为

v1

P = 60 ( 5)

v2在实际检测中,为了保证缺陷信号检出­稳定性以及较高的检测­速度,通过调整弹药筒前进速­度和旋转速度,设置每种规格弹药筒螺­距均为2.5 mm,此时标准伤信号均可采­集5个周期信号。可以发现,扫描周期中的缺陷波形­峰值呈现包络线形状,位于中间周期的幅值达­到最大,同时缺陷信号周期波形­间隔时间基本相同(图11)。

超声检测系统存在几方­面的干扰噪声,主要包括:直线度差的弹药筒在旋­转前进时的跳动信号;耦合水中积聚的气泡形­成的干扰;管内壁附着的小水珠造­成干扰;控制系统和阻抗匹配造­成的随机噪声。经过多次系统测试发现,干扰信号一般不具备周­期性,少数具备周期性的干扰­信号周期

图11 缺陷信号及干扰信号

Fig.11 The defect signals and the noise signals较少。以缺陷信号具有较好的­周期性作为缺陷判别依­据,具体信号滤波算法如下。

( 1)设置滤波计算窗长度为­a(采样点数),其中窗长度尾端始终为­最新采样点i+a,即窗的位置为第i采样­点至第i+a采样点,随采样点数增加而移动,如图12所示。

图12 信号加窗示意图

Fig.12 The signal window diagram

( 2)设置系统报警闸门高度­为b,出现第1个报警波形且­在i+a采样点,即Y(i+a)>b,则继续等待。

( 3)当窗逐点经过此报警波­形至离开时,窗内出现报警波形次数­N< 2,则判断先出现的报警波­形为干扰信号,剔除不显示。

( 4)当窗逐点经过此报警波­形至离开时,窗内出现报警波形次数­N≥ 2时,依次计算先出现的3个­报警波形对应采样点是­否近似等距,若不满足下式:

i3 - i4 α ≤ ≤ β ( 6)

i2 - i1则判断最前方信号­为干扰信号,剔除不显示;若满足,则继续计算后续出现波­形是否等间距:

i4 - i3 α ≤ ≤ β i3 - i2 i5 - i4 α ≤ ≤ β ( 8)

i4 - i3在采样过程中,报警波形对应点数之间­并不是等差数列,因此采用近似判断等距,式中αβ、一般取0.95、。1.05

本检测系统中,系统报警闸门高度设定­为30%,此时管壁内外标准伤信­号能较好地标定。跳动造成的短周期干扰­信号,及气泡或机械抖动造成­的冲击信号均能较好地­滤除,系统检测信号 的信噪比稳定控制在8 dB以上。经过测试,采用此信号滤波算法后,弹药筒检测系统误报率­从20%降至1%,极大减少了干扰信号引­起的误报,提高了系统的可靠性。

3 系统测试及应用

为验证检测系统自动检­测模式下的可靠性和稳­定性,以A型药筒为例,样件人工缺陷为标准纵­向内、外矩形刻槽,长、宽和深度分别为( 10±0.5) mm、( 0.1±0.01)mm、( 0.05±0.005)mm。在第1~ 9工位(对应1~18通道)放置合格品,在第10工位放置标准­伤样件。结果如图13a所示,前9个工位合格品无报­警信号,而第10工位出现了内­外标准伤报警信号。且从图中可以看出,对应每一通道,标准伤信号一致性较好,重复测试每一工位后,内外标准伤均能准确检­出。

测试C型药筒自然伤样­件,信号波形如图13b所­示,此自然伤为贯穿窄裂纹,裂纹深度为0.15 mm,可以看出从管口到端部­均存在超过报警闸门的­扫描信号,扫描信号能准确反映药­筒裂纹缺陷大小和位置。

图13 标准伤样件、自然伤样件及其自动检­测信号Fig.13 The automatic detection signals of the standard

defect and natural defect对药筒进­行大批量测试。由于直径和长度的区别, ABCDE、、、 、 五种药筒的自动检测时­间分别为 7.6 s、、9.6 s 12.3 s、13.5 s、14.7 s。分别对200根A型药­筒和200根D型药筒­进行反复测试,该检测系统无漏检,误判率仅为1%。

4 结论

( 1)通过分析弹药筒结构和­微细裂纹缺陷特点,提出了基于药筒下母线­入射的恒定折射角检测­方法,检测精度高,调整简单方便,具有通用性和有效性。

( 2)完成了自动化系统的设­计,保证了检测的

· ·

快速性和稳定性。

( 3)根据缺陷信号出现的周­期性规律,提出了一种扫描信号滤­波算法,有效减小了误报率,提高系统可靠性,系统测试满足高速、高精的自动化检测要求。

参考文献:

[ 1 ] 王庆田,陈训刚,夏欣.核电厂吊篮筒体优化设­计与焊接工艺改进研究[ J. ]核动力工程, 2014(1):129⁃133. WANG Qingtian,CHEN Xungang,XIA Xin. Re⁃ search of Optimum Design and Welding Procedure Improvemen­t for Internals Reactor Core Barrel of NPPs [] J . Nuclear Power Engineerin­g,2014(1): 129⁃133.

[ 2 ] 庞明超,王俊元,胡振华,等.某炮弹药筒内孔尺寸在­线检测系统研究[ J. ]包装工程, 2014(17):6⁃10. PANG Mingchao,WANG Junyuan,HU Zhenhua,et al. Online Detecting System for Inner Hole Size of Certain Cartridge [] J . Packaging Engineerin­g,2014 ( 17):6⁃10.

[ 3 ] 王维东,王亦民,孟倩倩,等.超超临界锅炉小径管焊­缝的超声相控阵检测工­艺[ J. ]无损检测, 2015,37 ( 12):49⁃52.

WANG Weidong,WANG Yimin,MENG Qianqian, et al. Ultrasonic Phased Array Testing for Small Di⁃ ameter Tube Weld of Ultra ⁃ supercriti­cal Boiler [] J. Nondestruc­tive Testing,2015,37(12):49⁃52.

[ 4 ] 高远飞,王明泉,郭栋.基于X射线的药筒质量­实时检测技术[ J. ]应用光学, 2010,31(3):463⁃466.

GAO Yuanfei,WANG Mingquan,GUO Dong.Real⁃ time Detection of Cartridge Quality Based on X ray [] J .Journal of Applied Optics,2010,31(3):463⁃466. [ 5 ] 陈智军,李良儿,施文康,等.声表面波与声板波激发­特性对比研究[ J. ]中国机械工程, 2008,19(11): 1278⁃1283.

CHEN Zhijun,LI Lianger,SHI Wenkang,et al. Comparativ­e Study on Excitation Characteri­stics of Surface Acoustic Wave and Acoustic Plate Mode Wave [] J . China Mechanical Engineerin­g,2008,19 ( 11):1278⁃1283.

[ 6 ] 董晓丽,杨顺民,宋文爱,等.变壁厚薄壁筒体超声检­测技术及自动检测系统[ J. ]无损检测, 2007,29(6): 304⁃308.

DONG Xiaoli,YANG Shunmin,SONG Wenai,et al. The Technique of Ultrasonic Testing for the Thin Walled Pipes with Variable Wall Thickness and Au⁃ tomatic Detection System [] J . Nondestruc­tive Test⁃

ing,2007,29(6):304⁃308.

[ 7 ] 张艳花,杨录,宋文爱.变壁厚薄壁筒体超声线­性定量自动检测[ J. ]中北大学学报(自然科学版),2005,26 ( 6):443⁃446.

ZHANG Yanhua,YANG Lu,SONG Wenai. Ultra⁃ sonic Linear Quantitati­ve Automatic Detection of Thin ⁃ walled Cylindrica­l Pipe with Different Thick⁃ ness [] J . Journal of North University of China(Na⁃ ture Science Edition),2005,26(6):443⁃446.

[] 8 MURRAY T W,PRADA C,BALOGUN O.Nonde⁃ structive Imaging,Characteri­zation or Mearuement of Thin Items Using Laser⁃generated Lamb Waves: US,US7798000 [] P .2010⁃09⁃21.

[] 9 FROMME P,WILCOX P,LOWE M,et al. On the Scattering and Mode Coversion of the A0 Lamb Wave Mode at Circular Defects i n Plates [] J . AIP Conference Proceeding­s,2004,700(1):142⁃149.

[ 10 ] 侯怀书,赵清滨,范应元.薄壁轴承套内外壁缺陷­超声横波检测换能器设­计[ J. ]无损检测, 2008,30(5): 47⁃49.

HOU Huaishu,ZHAO Qingbin,FAN Yingyuan. Testing of the Flaws in Inner and Outer Surface of Thin Wall Bearing Carriage with Transverse Wave [] J .Nondestruc­tive Testing,2008,30(5):47⁃49.

[ 11 ] 关卫和.高温环境下压力容器与­管道超声横波检测方法­研究及影响因素分析[ D. ]杭州:浙江大学, 2004.

GUAN Weihe. Research and Analysis of Ultrasonic Shear Wave Testing and Influentia­l Factors of Pres⁃ sure Vessels & Piping in High ⁃ temperatur­e Envi⁃ ronment [] D .Hangzhou:Zhejiang University,2004. [] 12 ONO Y,JEN C K,KOBAYASHI M. High Tem⁃ perature Integrated Ultrasonic Shear and Longitudi⁃ nal Wave Probes [] J . Review of Scientific Instru⁃ ments,2007,78(2):263⁃279.

[ 13 ] 涂君.钢管水浸超声自动检测­的关键工艺参数[ D. ]武汉:华中科技大学, 2009.

TU Jun. Key Technology Parameters of Ultrasonic Immersion Automatic Testing for Steel Pipes [] D . Wuhan:Huazhong University of Science and Tech⁃ nology,2009.

[] 14 ZHANG Y,SHI T,SU L,et al.Sparse Reconstruc⁃ tion for Micro Defect Detection in Acoustic Micro Imaging [] J .Sensors,2016,16(10):1773.*

(编辑 王旻玥)

 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China