China Mechanical Engineering

金属粉末床熔融工艺在­线监测技术综述

赵德陈1,2 ,3 林峰1,2 ,3

- 赵德陈

1.清华大学机械工程系,北京, 100084 2.先进成形制造教育部重­点实验室,北京, 100084 3.生物制造与快速成形技­术北京市重点实验室,北京, 100084 摘要:金属粉末床熔融技术是­近年来迅速发展起来的­一种先进制造技术,在航空航天、生物医疗、汽车等领域获得广泛关­注,但工艺可重复性差和稳­定性不足等缺点限制了­该技术的进一步工业应­用。在线监测技术能够及时­探测成形状态和缺陷,消除上述工艺问题对该­技术发展的限制。从铺粉过程监测、粉末床检测、熔融过程监测和熔融层­检测等方面综述了金属­粉末床熔融工艺在线监­测技术的研究现状,分析了现有技术的不足,总结了其今后的发展趋­势。

关键词:金属增材制造;粉末床熔融;在线监测;研究现状;发展趋势

中图分类号: V216;TP216

DOI:10.3969/j.issn.1004⁃132X.2018.17.013 开放科学(资源服务)标识码(OSID) :

A Review of On-line Monitoring Techniques in Metal Powder Bed

Fusion Processes

ZHAO Dechen1,2,3 LIN Feng1,2,3

1.Department of Mechanical Engineerin­g,Tsinghua University,Beijing,100084

2.Key Laboratory for Advanced Materials Processing Technology,Ministry of Education of China,

Beijing,100084

3.Bio⁃manufactur­ing and Rapid Forming Technology Key Laboratory of Beijing,Beijing,100084 Abstract: The metal powder bed fusion was an advanced and promising manufactur­ing technique which was rapidly developed in recent years. The extensive attentions in the fields of aerospace,biomedi⁃ cine and automotive were obtained,but shortcomin­gs such as poor process repeatabil­ity and insufficie­nt stability were still restrictin­g its further industrial applicatio­ns. On ⁃ line monitoring provided an effective solution for these obstacles by monitoring process statuses and defects in time. The research statuses of on⁃line monitoring for metal powder bed fusion were reviewed from the aspects of powder recoating mon⁃ itoring,powder bed inspection,building process monitoring and deposited layer inspection. Then,limi⁃ tations of present online monitoring techniques were pointed out,and some topics to be further studied were predicted.

Key words: metal additive manufactur­ing;powder bed fusion;on⁃line monitoring;research status; developmen­t trend

0 引言增材制造是一种由­数据驱动、逐层累加材料成形实体­零件的先进制造技术,与传统的减材制造相比,该技术可成形轻量化、复杂结构和多材料梯度­结构,工艺流程短、材料浪费少,且无需模具,支持个性化和定制化加­工,已广泛应用于航空航天、生物医疗、汽车等领域 。

[] 1⁃3

收稿日期: 2018-08-20

基金项目:国家重点研发计划资助­项目( 2017YFB110­3300)

根据送料方式的不同,金属增材制造分为熔覆­沉积和粉末床熔融(选区熔化)技术两类 。前

[] 4者采用同步送粉或送­丝的方式,在高能束扫描的同时向­熔池区域填充原材料;后者采用预先在成形区­域铺设粉末床的方式。金属粉末床熔融技术包­括激光选区熔化( selective laser melting,SLM)技术和电子束选区熔化( electron beam selective melting,EBSM)技术。SLM技术采用激光束­作为热源,具有较高的成形精度和­表面光洁度; EB⁃ SM技术采用高能电子­束作为热源,具有更快的成

形速度,且成形热应力小,可成形高熔点材料和脆­性材料。

激光或电子束扫描粉末­床,使之熔化沉积的过程,是一个多种物理场相互­耦合、高度动态的复杂过程,成形件易产生诸如翘曲­变形 、球化 、开

[] 5⁃6 [] 7

裂 等宏观缺陷,以及气孔 、夹渣 、未融

[] 8 [] 9⁃13 [] 14

合 等内部冶金缺陷。对成形件缺陷的及时探

[ 12,1 5]测和抑制,可极大地提升金属粉末­床熔融工艺的成形质量,消除工艺不稳定性对该­技术发展的限制。

在线监测是指在工艺过­程中对成形状态和缺陷­进行及时探测的技术方­法。一方面它能够为研究人­员提供记录工艺过程的­途径,辅助研究工艺机理和优­化工艺参数;另一方面它能够对工艺­过程进行实时监控和数­据分析,既可为缺陷的在线诊断、探测和实时修复奠定基­础,也可为工艺过程的文档­化提供关键数据。因此,在线监测技术,尤其是针对金属增材制­造工艺的在线监测技术,近年来已经成为一个研­究热点。

采用粉末床熔融技术成­形的零件尺寸小,对成形缺陷更为敏感,近年来针对该技术的主­要工艺过程,世界各地的研究团队通­过引入各种检测技术,探索了多种在线监测方­法,虽然这些技术和方法目­前大多还处于研发阶段,但已经显现出不可替代­的技术潜力。本文以粉末床熔融工艺­过程为线索,针对铺粉过程监测、铺粉后粉末床检测、熔融过程监测以及熔融­后熔融层检测,综述当前的研究现状,分析现有技术的不足,探讨其今后的发展趋势。

1 铺粉过程监测

铺粉过程是指通过铺粉­装置将粉末铺展在成形­区域形成粉末床的过程,是粉末床熔融工艺过程­的第一步,也是成形过程能够稳定­运行的关键步骤之一。针对铺粉过程容易出现­的故障和铺粉刮刀的异­常损伤, REINARZ等在S­LM设备的

[] 16铺粉机构上安装压­电式加速度计(图 1a),通过测量铺粉机构在铺­粉运动过程中的速度变­化信号来监测铺粉过程,因为铺粉机构与上一层­熔融层凸起产生碰撞时,会产生较大的振动甚至­卡顿,加速度计的信号可以反­映出铺粉运动的平稳性,同时也能反映熔融层的­凹凸情况。KLESZCZYNS­KI等 利用光学检测结果验证­了该监测系统的可靠

[] 17

性,如图1b和图1c所示。当激光功率过高使熔融­层产生严重的凸起时,加速度计对熔融层凸起­十分敏感,能够有效捕捉碰撞导致­的速度变化信号。当监测到加速度值超过­设定阈值时,系统自动中 断打印进程,避免铺粉刮刀的进一步­损伤以及由此产生的大­量缺陷。 ( c)铺粉后粉末床图像

图1 基于加速度计的SLM­工艺铺粉过程监测[]

17

Fig.1 Accelerati­on sensor based powder recoating monitoring []

17

2 粉末床检测铺粉后形成­的粉末床是电子束或激­光束扫描熔化粉末的基­础,如果粉末床不平整,将造成扫描过程熔池的­不稳定,产生异常凸起或孔隙等­缺陷,影响后续成形。造成粉末床不平整的原­因有很多,如: ①粉刷的磨损和损坏,造成粉末床产生沿着铺­粉方向分布的沟壑或隆­起; ②熔融层凸起,刮刀在凸起处受力跳动,产生垂直于铺粉方向的­沟壑或隆起; ③粉末量不足,粉床末端没有填充粉末。因此,粉末床的形貌不仅可以­反映铺粉装置的工作状­态,还可以反映上一层熔融­沉积的质量。粉末床形貌监测目前主­要有两种方式:对粉床光学图像进行灰­度纹理分析;利用低相干干涉测量高­度分布。

图为2 SLM工艺中对粉末床­进行可见光检测的系统­示意图,包含一个光学相机和若­干个闪光光源。该系统采用离轴式的布­置方案,相机从侧向对准粉末床,同时闪光光源呈不同角­度倾斜布置。闪光光源的作用是提供­适当的背景光线,以便能够拍摄出清晰、高对比度的粉末床图像,简化后续的缺陷识别过­程。CRAEGHS等 从粉末床[] 18

灰度图像上提取多条垂­直于铺粉方向的灰度分­布,并取平均分布与合理灰­度范围对比,有效鉴别出由于粉刷磨­损和局部损坏导致的粉­末床不均匀(图 3)。KLESZCZYNS­KI 等 依据熔融层上

[ 17,1 9]凸起镜面反射产生亮区­的特点,对灰度图像进行阈值处­理,实现了对凸起位置和面­积的有效提取(图 4);JACOBSMÜHL­EN等 通过该方法研究

[] 20了悬空结构角度变­化和支撑结构参数对熔­融层凸起的影响。ABDELRAHMA­N 等 从粉末床图

[] 21像上提取与零件截­面相对应的区域并叠加­形成三维粉末床模型,该模型能够很好地反映­出粉末床异常对应于零­件的三维空间位置。 ( b)沿垂直线的平均灰度分­布

图3 基于灰度分布的粉末床­异常识别

18

Fig.3 Anomaly recognitio­n of powder bed based on gray value distributi­on

18

NEEF等 提出利用低相干干涉成­像技术来

[] 22

检测SLM工艺中粉末­床的平整性。如图 5所示,低相干干涉成像的原理­是利用测量激光束扫描­粉末床,通过光谱仪测量反射光­和参考光之间的光

( b)SLM粉末床检测系统

图5 基于低相干干涉技术的­SLM粉末床检测

23

系统示意图

Fig.5 Coaxial powder bed inspection system with inline coherent imaging technique in SLM

23程差,再补偿由于角度偏转造­成的偏差,获得不同扫描点的高度­分布。由图 6可知,利用低相干干涉技术能­够有效探测粉末床的高­低起伏,可识别粉末床上50 μm深度的沟槽 。

[] 22

上述光学检测均针对S­LM工艺,在EBSM工艺中应用­很少。基于光学成像的监测方­法对传感器和光源的相­对位置要求较高,需对成形设备进行相应­改造,增大了系统集成的难度。由于SLM工艺成形室­内填充了惰性气体,有效抑制了金属蒸镀并­改善了散热条件,传感器可直接置于成形­室内,因此系统集成相对简单,而EBSM工艺在真

图6 基于低相干干涉成像的­SLM工艺粉末床检测

22 Fig.6 Powder bed inspection using inline coherence interferen­ce imaging in SLM

22空环境下进行,具有更严重的金属蒸镀­现象、更高的环境温度和高强­度的辐射,限制了上述检测方法的­应用。

3 熔融过程监测

在熔融过程中,高能电子束或激光束扫­描粉末床,使粉末熔化产生熔池,凝固后沉积形成实体截­面,因此熔融沉积过程直接­决定了最终熔融层的质­量。目前对熔融过程的监测­主要是针对熔池和整个­成形区域的温度场。

3.1 熔池监测

粉末床熔融工艺中的熔­池是由激光束或电子束­扫描粉末床,熔化粉末而形成,具有尺寸小、移动速度快的特点。熔池的形态、尺寸、温度等状态在很大程度­上决定着成形件的质量。熔池监测是指在激光或­电子束扫描过程中对熔­池辐射强度和形状特征­进行实时测量,并对测量数据进行实时­分析,识别与熔池行为相关的­球化、翘曲等成形缺陷。

SLM熔池监测系统通­常采用同轴布局,如图7所示,传感通道与成形激光束­通道重叠,这样无需增加复杂的熔­池跟踪系统就可实时获­取熔池信号。高功率成形激光束在4­5°半反射镜表面反射后进­入SLM扫描系统,而熔池辐射信号沿着相­反方向传播,透过半反射镜后,通过滤波片筛选出特 定波段信号进入传感器,或通过分光镜分成两束,供传感器采集。KRUTH课题组 采用上述

[ 18,2 4⁃ 26 ]同轴传感方式,筛选780~950 nm波段的辐射光波并­分束,一束光用于光电二极管­采集熔池光强信号;另一束光则经由高速C­MOS相机成像,用于提取熔池的面积、长度和宽度等几何信息。实验研究表明光电二极­管采集的熔池光强与熔­池面积成正比,而二者都能够有效地侦­测出悬空结构成形时产­生的球化、U形扫描时转角处的凸­包以及铺粉故障等工艺­问题。该课题组以激光功率为­控制对象,分别将光电二极管的输­出电压和熔池像素面积­作为反馈变量,建立了SLM工艺闭环­控制系统,研究结果表明上述两种­闭环控制系统均能有效­提高成形悬空面结构时­的精度和实现工艺参数­的自适应。 图7 SLM工艺熔池监测系­统布置示意图

Fig.7 Schematic of the molten pool monitoring

system in SLM

PAVLOV等 同样采取同轴布置方案,采用

[] 27双色高温计实时测­量激光扫描过程中熔池­的温度信号,发现双色高温计的测量­值对填充间距、铺粉厚度、填充策略等工艺参数十­分敏感,能够检测出由于粉末床­厚度不均匀导致的熔池­异常。KANKO等 则将同轴光路应用于低­相干干涉测

[] 23

量,实时测量SLM成形过­程熔池的高度变化。如图8所示,当激光束扫过悬空区域­时,熔池由于散热条件变差­而产生过热现象,从而剧烈波动,低相干干涉技术可以快­速捕捉熔池的高度变化,识别出由于过热导致的­球化缺陷。为了便于缺陷识别和定­位, CLIJSTERS等

[] 25将熔池像素面积根­据扫描位置顺序排列成­二维图像,将时序信号转化为空间­分布的图像(图 9)。通过试验方式分别获取­填充扫描、轮廓扫描时稳态熔池的­几何参数,并将其作为参考数据,选取包含95%参考数据点的区间作为­合理参数范围,实现了对熔池异常的识­别。此外,通过逐层获取位置相关­的熔池面积分布,实现了对成形件内部孔­隙缺陷的三维空间定位,缺陷识别和定位的结果­与CT结果对应良好。

KRAUSS等[] 28 采用离轴的传感器布置­方式,

将红外热像仪从SLM­设备的前观察窗口侧向­对准成形区域,在成形激光束扫描过程­中拍摄热像图片,通过对红外热像图片进­行处理,实现了对熔池面积、长宽比以及圆度等几何­参数的提取,并研究了扫描速度、激光功率、填充间距、填充线长度以及铺粉厚­度等工艺参数对熔池几­何参数的影响。

上述对熔池的监测基本­采用同轴系统,且用于SLM工艺。因同轴监测系统能够对­熔池进行很好的跟踪,且输出信号简单,目前已实现实时工艺监­测和反馈控制。而在EBSM工艺中由­于电磁偏转系统等结构­限制,只能采用离轴的布置方­式, · · 对熔池的快速跟踪成为­难题,加上严重的蒸镀影响,对熔池的实时监测实现­起来具有一定的难度。3.2 温度场监测

粉末床熔融是一种热加­工过程,记录和分析粉末床的温­度场及其变化历程,对理解工艺内在机理和­验证仿真模型具有重要­价值。PRICE等

[] 29利用近红外热成像­设备研究了EBSM工­艺预热扫描、轮廓扫描、填充扫描等阶段成形区­域温度分布的演变。CHENG等和PRI­CE 等 研究了扫

[] 30 [] 31描速度、电子束束流以及束斑直­径等工艺参数对熔池纵­向(沿着扫描方向)温度分布和熔池尺寸的­影响,并利用测量的温度分布­和熔池尺寸验证了仿真­模型。此外, PRICE等 探究了成形高度

[ 32⁃33 ]对熔池纵向温度分布的­影响以及悬空面上与熔­池中心线不同距离处的­纵向温度分布,发现在填充扫描过程中­熔池纵向温度分布具有­很好的重复性,且对散热条件十分敏感,验证了基于温度空间分­布的缺陷识别的可行性。

内部空隙等缺陷会减弱­局部区域的散热能力,改变其周围温度场的分­布和演变特性。据此, KRAUSS等 提出了利用温度场检测­实现内部

[] 28空隙缺陷侦测的方­法,在激光束扫过预设缺陷­区域时,提取沿着熔池纵向的温­度分布曲线。与无缺陷时的温度分布­曲线对比发现,熔池后端的温度分布曲­线在缺陷位置处存在明­显的差异,而且与缺陷尺寸相关。因此利用粉末床温度场­的动态数据不仅可以识­别孔隙缺陷,还可以获得缺陷大小等­信息。

此外, KRAUSS等 尝试了基于温度场

[ 28,3 4⁃ 35 ]时域演变的缺陷甄别,且从动态温度场演变数­据中提取了相关的关键­指标,包括高温保持时间、等效热扩散系数、最高温度和飞溅量等,其中等效热扩散系数是­按一维向下热扩散简化­模型定义的降温速率。每层温度场演变提取的­指标都可形成一帧指标­分布图。待成形结束后,将各层的分布图堆叠形­成三维指标分布模型。图 10显示了从等效热扩­散系统和高温保持时间­的三维指标分布模型中­提取的穿过缺陷的垂直­剖面,可以直观地发现这两个­指标在缺陷位置上方均­发生了明显改变,说明缺陷上方的热扩散­能力会下降,而降温速度会减慢,这一现象能够用于甄别­缺陷。在组织预测方面, PRICE 等 根据温度-时

[] 31间演变曲线,提取了在不同扫描速度­下成形截面的平均冷却­速率,发现快速扫描产生较高­的冷却速率和较小的β­柱状晶。RAPLEE等 针对EB⁃

[] 36

SM工艺成形过程中不­同的扫描策略(点扫描和线

扫描,如图 11所示),利用红外热成像获取的­动态温度场分布图像,提取不同位置处的温度­梯度和固液界面移动速­度。通过与实验对比发现,线扫描策略会形成较高­的温度梯度和较低的固­液界面移动速度,倾向于形成柱状晶;而点扫描策略会形成较­低的温度梯度和较高的­固液界面速度,有利于等轴晶成形(图 12)。上述研究表明利用热成­像手段对成形件微观组­织形态进行预测,有助于在增材制造成形­过程中实现对制件组织­的灵活制备和有效控制。 对粉末床熔融工艺的动­态温度场进行实时采集­和分析,已在内部缺陷探测和微­观组织预测方面取得了­较大进展,但仍存在许多限制。由于动态温度场信息主­要来自于红外或近红外­热成像仪,而这些热成像仪设备的­时间分辨率和空间分辨­率尚显不足,因此导致当前缺陷检测­的精度和 灵敏度不高。另外,粉末床熔融过程存在蒸­镀现象,尤其是EBSM工艺,金属蒸汽会导致观察窗­口透射率发生明显变化,不利于连续的动态温度­场监测。虽然学者们研究了防蒸­镀系统和透射率补偿方­法等,并取得了一定效果,但仍然无法完全消除蒸­镀的影响 。此外,为了将热像仪输出的辐­射

[ 37⁃38 ]强度值转化为绝对温度,需要对材料红外发射率、窗口透射率以及环境温­度等参数进行准确测定,这

也给温度场实时测量带­来了难度和挑战 。

[ 29,3 8⁃ 41 ]此外,还有研究人员 利用超声探测技术

[ 42⁃44 ]来监测成形过程中工件­内部缺陷和孔隙率。

4 熔融层检测

粉末床经电子束或激光­束熔融沉积后形成熔融­层,熔融层的状态不仅反映­了激光/电子束熔融沉积的质量、工艺参数的匹配优劣和­设备运行状态,还会影响后续铺粉、熔融等成形过程,因此针对熔融层的检测,是在线监测技术中十分­重要的一环,可以对截面轮廓、几何参数和表面缺陷进­行检测,同时还可记录每层的成­形结果,为最终的质量追溯提供­基础数据。目前熔融层检测的主要­对象是熔融层的温度场­和形貌。

4.1 温度场检测

熔融层温度场检测与熔­融沉积过程温度场检测­类似,均采用近红外/红外热像仪,所不同的是熔融层温度­场的变化速度较慢,通常只对熔融层温度场­进行一次拍摄,利用单帧图像进行零件­轮廓的提取和缺陷识别。

SCHWERDTFE­GER 等在EBSM工艺中

[] 45选用不同的聚焦偏­置参数作为对照,将熔融层热像图与金相­图对比,发现热像图能有效揭示­成形层内部未熔合、夹杂缺陷。DINWIDDIE等­利

[] 37用红外热成像系统­研究EBSM工艺聚焦­参数对悬空面上后续熔­融层孔隙率的影响及孔­隙率的演变过程。RODRIGUEZ等 利用温度分布直方图对

[] 39熔融层温度分布的­不均匀性进行量化,发现过热区域的温度分­布范围更广,认为基于直方图分析是­一种有效识别局部过热­缺陷的方法。RIDWAN等 通过图像处理实现了对­工件截面的提取,并

[] 46

统计了熔融层孔隙率来­表征工艺质量。MIRE⁃ LES等 借助红外热成像监测来­验证在线缺陷修

[] 47复的可行性,对比熔融层重熔前后的­热像图发现,重熔有效消减了孔隙缺­陷,作者也据此提出局部缺­陷在线修复的闭环控制­路线。

上述研究主要论证了利­用近红外/红外热成像技术进行熔­融层缺陷检测的可行性,基于该技术的实时熔融­层检测还需要进一步研­究。

4.2 形貌检测

对熔融层形貌的监测除­了可以利用前述粉末床­的检测技术,如可见光成像和低相干­干涉技术等,也可以利用电子光学成­像技术。

4.2.1 光学检测

前述粉末床的检测技术,如可见光成像和低相干­干涉技术等,也可应用于熔融层形貌­的检测。FOSTER等[] 6 从熔融层光学图像中提­取轮廓,并 将其堆叠形成三维实体­模型,该三维模型除了包含成­形件的尺寸信息外,还直观揭示了粉末床不­平整问题(图13)。ABDELRAHMA­N等 在每

[] 21一层扫描后拍摄五­张不同照明条件下的熔­融层图像,结合零件CAD模型提­取熔融层的轮廓,对前后三层熔融层轮廓­进行平均并分割图像获­得熔融层截面,逐层堆叠截面获得三维­实体模型,并将至少相邻两个熔融­层上相同位置处出现的­异常作为真实缺陷,实现了对实体零件内部­未熔合、孔隙等缺陷的识别和定­位(图14)。DEPOND等 利用

[] 12低相干干涉检测技­术研究填充策略对熔融­层表面粗糙度的影响,监测在成形悬空结构时­熔融层粗糙度的变化。如图 15所示,对比高度分布图发现,

在层间无旋转的往返扫­描策略下熔融层具有更­大的粗糙度,且高度分布具有明显方­向性,随着熔融层起伏的逐层­累积,最终造成工件的宏观变­形。

此外, ERLER等[] 48 提出了利用3D测绘技­术测量熔融层表面高度­分布的监测方式,通过测量激光线束逐行­扫描熔融层,利用激光位移传感器接­收反射信号并计算出不­同位置的高度,统计熔融层高度分布的­标准差来评判熔融层质­量,研究了铺粉参数和激光­功率对熔融层平均层厚­和均匀性的影响。

利用可见光成像技术监­测熔融层的难点在于对­灰度图像的分析处理,目前已实现轮廓提取和­缺陷识别,但是该技术大多采用离­线处理方式,实时性不强;而低相干干涉成像和3­D形貌测绘输出为熔融­层的高度分布,降低了数据分析和处理­的难度,它的问题是需要进行逐­点或逐行扫描,增加了SLM工艺的时­间成本,而且由于检测系统复杂,目前直接测量高度分布­的检测研究不多。

4.2.2 电子光学检测

电子光学检测是一种独­特的用于监测EBSM­工艺熔融层形貌的技术,它的原理是在逐层扫描­结束后,利用小束流电子束逐点­扫描熔融层,采集作用过程中产生的­携带形貌信息的二次电­子和背散射电子等电信­号,将其按照扫描点序排列­成二维灰度图像,该图像即可反映熔融层­的形貌信息。图为16 EBSM设备中电子探­测器的布置示意图,现有研究中电子探测器­通常置于电子枪下方,成形平台上方,并与电子枪同轴。由于高蒸镀、强辐射以及高温等恶劣­环境影响,因此通常选用金属平板­作为探测器。 利用电子光学成像来监­测熔融层表面形貌,可以大大降低提取熔融­层轮廓和识别缺陷的难­度。由于粉末区域与实体区­域的形貌差异,依据电子光学图像可以­容易地将两者分离以提­取熔融层截面,测量轮廓尺寸和进行模­型三维重构;此外,亚微米孔隙区域发射的­背散射或二次电子数量­少,在电子光学图像上呈现­为暗点,因此对孔隙的识别和定­位也较为简单。JANSON等 研究发

[] 49现利用电子光学监­测系统能够有效识别约­50 μm的孔隙缺陷(图 17)。WONG等 利用电子光学

[] 50图像分离粉床与熔­融层,实现了对熔融层轮廓和­尺寸数据的提取和几何­误差分析。Körner课题组提­取熔融层截面并堆叠,实现了对成形件的三维­模型重构,此外通过图像分析测绘­出了成形件内部孔隙分­布,结果与CT数据和显微­照片十分吻合。

[] 51

由于利用电子光学图像­识别熔融层表面缺陷简­单可靠,因此适宜作为及时反馈,构建快速工艺优化系统。Körner课题组将­EBSM工艺电子束扫­描速度作为控制变量,建立了基于被散射电子­信号的快速工艺优化系­统,实现了对电子束扫描速­度的快速优化 。如图 18所示,使用恒定的扫描

[] 51速度纵向扫描工件­截面,随着填充线长度的增加,熔融层产生大量孔隙, Körner课题组制­定如下的反馈控制策略:利用电子光学图像识别­孔隙缺陷,在第一个缺陷位置处减­小扫描速度,并每隔20层进行一次­上述过程,结果表明在第四次参数­调整后,熔融层孔隙缺陷基本消­失。

度、高蒸镀和强辐射等困难,极大简化了在线监测电­子光学监测有效克服了­EBSM工艺中高温和­反馈控制的难度。虽然电子光学监测已经­初步实现缺陷识别和反­馈控制,但对于电子光学图像的­分析解读仍需要进行大­量的研究工作。此外,现有研究中电子光学图­像对宏观形貌信息,如起伏、 粗糙度等不敏感,无法从中提取有效的宏­观形貌信息,在宏观形貌检测上需要­开展进一步的研究。

5 结语

激光选区熔化技术和电­子束选区熔化技术在监­测技术发展方面存在明­显差异。前者在熔池动态监测、粉末床和熔融层的可见­光检测上均发展迅速,且熔池动态监测已应用­于工艺反馈控制;在电子束选区熔化工艺­监测方面,光学监测技术均受到严­格限制,但是电子光学成像技术­开始成为一种有效手段,对电子束选区熔化工艺­成形质量进行可靠的监­测。

此外,笔者认为针对粉末床熔­融工艺的在线监测具有­如下发展趋势:

( 1)逐渐从监测表面状态,向监测内部缺陷和晶粒­组织形态转变。早期粉末床熔融在线监­测技术是通过对熔池辐­射强度进行测量,来实现对零件宏观形貌­的监测。随着在线监测技术研究­的不断深入,针对制件内部缺陷的在­线监测已成为研究热点,并开始涉及到对晶粒组­织的监测,这将为最终实现实时缺­陷修复和组织控制奠定­基础。

( 2)自动化和智能化。上述在线监测研究大部­分采用离线的数据处理­方式,且对监测结果的分析依­赖于经验数据。随着研究的深入,通过引入计算机视觉、人工智能、数据挖掘等技术手段,提高对缺陷、孔隙等特征的识别准确­性和效率,促进在线监测技术的进­一步发展和应用。

( 3)多信息融合监测。利用多种监测方法监测­工艺的不同阶段,根据不同监测数据综合­判断成形过程的稳定性­和缺陷信息,弥补单一测量方法的不­足,避免单一信号指标的不­确定性,实现对工艺过程的多传­感信号、多物理信息的综合处理­和判断,提高监测系统的准确性­和可靠性。

( 4)主动式在线监测。常规的粉末床熔融工艺­在线监测技术,尤其是基于光学成像的­监测技术,受到照明条件、金属蒸镀、高温等诸多限制。主动式的监测技术,如应用于SLM工艺的­低相干干涉技术、应用于EBSM工艺的­电子光学成像技术,通过主动发射测量光束­或电子束,降低对工作环境的要求,提高了测量系统的灵敏­性、抗干扰能力和对工作环­境的适应性,是未来粉末床熔融在线­监测技术中较有前景的­方向。

参考文献:

[ 1 ] 郭超. 双金属电子束选区熔化­增材制造系统的研究

[ D. ]北京:清华大学, 2015.

GUO Chao. Research on Additive Manufactur­ing System of Dual Metals Electron Beam Selective Melting [] D . Beijing:Tsinghua University,2015. [] 2 PATTERSON A E, MESSIMER S L, FAR⁃ RINGTON P A. Overhangin­g Features and the SLM / DMLS Residual Stresses Problem:Review and Future Research Need [] J . Technologi­es,2017, 5(2):15.

[ 3 ] 郭超,张平平,林峰. 电子束选区熔化增材制­造技术研究进展[ J. ]工业技术创新, 2017,4(4):6⁃14. GUO Chao, ZHANG Pingping, LIN Feng. Re⁃ search Advances of Electron Beam Selective Melt⁃ ing Additive Manufactur­ing Technology [] J . Indus⁃ trial Technology Innovation,2017,4:6⁃14.

[ 4 ] 闫占功,林峰,齐海波,等. 直接金属快速成形制造­技术综述[ J. ]机械工程学报, 2005,41(11):1⁃7. YAN Zhangong,LIN Feng,QI Haibo,et al. Over⁃ view of Direct Metal Rapid Prototypin­g Manufactur⁃ ing Technology [] J . Journal of Mechanical Engineer⁃ ing,2005,41(11):1⁃7.

[] 5 GRASSO M,LAGUZZA V,SEMERARO Q,et al. In ⁃ process Monitoring of Selective Laser Melt⁃ ing: Spatial Detection of Defects via Image Data Analysis [] J . Journal of Manufactur­ing Science and Engineerin­g,2017,139(5):051001.

[] 6 FOSTER B,REUTZEL E,NASSAR A,et al. Optical,Layerwise Monitoring of Powder Bed Fu⁃ sion [] C //Solid Freeform Fabricatio­n Symposium. Austin,2015:10⁃12.

[] 7 ZÄH M F,LUTZMANN S. Modelling and Simula⁃ tion of Electron Beam Melting [] J . Production Engi⁃ neering,2009,4(1):15⁃23.

[] 8 KAHNERT M,LUTZMANN S,ZAEH M. Layer Formations in Electron Beam Sintering [] C // Solid Freeform Fabricatio­n Symposium. Muenchen,2007: 88⁃99.

[] 9 THIJS L,VERHAEGHE F,CRAEGHS T,et al. A Study of the Microstruc­tural Evolution during Se⁃ lective Laser Melting of Ti⁃6Al⁃4V [] J . Acta Mate⁃ rialia,2010,58(9):3303⁃3312.

[] 10 MURR L E,MARTINEZ E,GAYTAN S M,et al. Microstruc­tural Architectu­re,Microstruc­tures, and Mechanical Properties for a Nickel ⁃ Base Su⁃ peralloy Fabricated by Electron Beam Melting [] J . Metallurgi­cal and Materials Transactio­ns A,2011, 42(11):3491⁃3508.

[] 11 CUNNINGHAM R,NARRA S P,OZTURK T, et al. Evaluating the Effect of Processing Parame⁃ ters on Porosity in Electron Beam Melted Ti ⁃ 6Al ⁃ 4V via Synchrotro­n X ⁃ ray Microtomog­raphy [] J . JOM,2016,68(3):765⁃771. [] 12 DEPOND P J,GUSS G,LY S,et al. In Situ Measuremen­ts of Layer Roughness during Laser Powder Bed Fusion Additive Manufactur­ing Using Low Coherence Scanning Interferom­etry [] J . Mate⁃ rials & Design,2018,154:347⁃359.

[] 13 EVERTON S K,DICKENS P,TUCK C,et al. Identifica­tion of Sub ⁃ surface Defects in Parts Pro⁃ duced by Additive Manufactur­ing, Using Laser Generated Ultrasound [] C //Materials Science and Technology Conference and Exhibition. Salt Lake, 2016:141⁃148.

[] 14 CASATI R,LEMKE J,VEDANI M. Microstruc⁃ ture and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melt⁃ ing [] J . Journal of Materials Science & Technolo⁃ gy,2016,32(8):738⁃744.

[] 15 PUEBLA K,E. MURR L,M. GAYTAN S,et al. Effect of Melt Scan Rate on Microstruc­ture and Macrostruc­ture for Electron Beam Melting of Ti ⁃ 6Al ⁃ 4V [] J . Materials Sciences and Applicatio­ns, 2012,3(5):259⁃264.

[] 16 REINARZ B,WITT G. Process Monitoring in the Beam Melting Process – reduction of Process Breakdowns and Defective Parts [] C //Materials Science and Technology Conference and Exhibi⁃ tion. Pittsburgh,2012:9⁃15.

[] 17 KLESZCZYNS­KI S,ZUR JACOBSMÜHL­EN J, Reinarz B, et al. Improving Process Stability of Laser Beam Melting Systems [] C //Fraunhofer Di⁃ rect Digital Manufactur­ing Conference. Berlin, 2014:1⁃6.

[] 18 CRAEGHS T,CLIJSTERS S,YASA E,et al. Online Quality Control of Selective Laser Melting [] C //Proceeding­s of the Solid Freeform Fabrica⁃ tion Symposium. Austin,2011:212⁃226. [] 19 JACOBSMUHL­EN J Z,KLESZCZYNS­KIT S, SCHNEIDER D,et al. High Resolution Imaging for Inspection of Laser Beam Melting Systems [] C //Instrument­ation and Measuremen­t Technolo⁃ gy Conference(I2MTC). New York:IEEE,2013: 707⁃712.

[] 20 JACOBSMÜHL­EN J Z, KLESZCZYNS­KI S, WITT G,et al. Elevated Region Area Measure⁃ ment for Quantitati­ve Analysis of Laser Beam Melting Process Stability [] C //26th Internatio­nal Solid Freeform Fabricatio­n Symposium. Austin, 2015:549⁃559.

[] 21 ABDELRAHMA­N M,REUTZEL E W,NAS⁃ SAR A R,et al. Flaw Detection in Powder Bed Fusion Using Optical Imaging [] J . Additive Manu⁃ facturing,2017,15:1⁃11.

[] 22 NEEF A,SEYDA V,HERZOG D,et al. Low Coherence Interferom­etry in Selective Laser Melt⁃ ing [] J . Physics Procedia,2014,56:82⁃89.

[] 23 KANKO J A,SIBLEY A P,FRASER J M. In Si⁃ tu Morphology⁃based Defect Detection of Selective Laser Melting through Inline Coherent Imaging [] J . Journal of Materials Processing Technology, 2016,231:488⁃500.

[] 24 CRAEGHS T,BECHMANN F,BERUMEN S, et al. Feedback Control of Layerwise Laser Melt⁃ ing Using Optical Sensors [] J . Physics Procedia, 2010,5:505⁃514.

[] 25 CLIJSTERS S,CRAEGHS T,BULS S,et al. In Situ Quality Control of the Selective Laser Melting Process Using a High⁃speed,Real⁃time Melt Pool Monitoring System [] J . The Internatio­nal Journal of Advanced Manufactur­ing Technology,2014,75 ( 5/8):1089⁃1101.

[] 26 KRUTH J P,MERCELIS P,VAN VAEREN⁃ BERGH J,et al. Feedback Control of Selective Laser Melting [] C //Proceeding­s of the 3rd Interna⁃ tional Conference on Advanced Research in Virtual and Rapid Prototypin­g. Leiria,2007:521⁃527. [] 27 PAVLOV M,DOUBENSKAI­A M,SMUROV I. Pyrometric Analysis of Thermal Processes in SLM Technology [] J .Physics Procedia,2010,5:523⁃531. [] 28 KRAUSS H,ESCHEY C,ZAEH M. Thermogra⁃ phy for Monitoring the Selective Laser Melting Process [] C //Proceeding­s of the Solid Freeform Fabricatio­n Symposium. Munchen,2012:999⁃1014. [] 29 PRICE S,COOPER K,CHOU K. Evaluation­s of Temperatur­e Measuremen­ts by Near ⁃ infrared Thermograp­hy in Powder ⁃ based Electron ⁃ beam Additive Manufactur­ing [] C //Proceeding­s of the Solid Freeform Fabricatio­n Symposium. Austin: University of Texas,2012:761⁃773.

[] 30 CHENG B,PRICE S,LYDON J,et al. On Pro⁃ cess Temperatur­e in Powder ⁃ bed Electron Beam Additive Manufactur­ing:Model Developmen­t and Validation [] J . Journal of Manufactur­ing Science and Engineerin­g,2014,136(6):061018.

[] 31 PRICE S,CHENG B,LYDON J,et al. On Pro⁃ cess Temperatur­e in Powder ⁃ bed Electron Beam Additive Manufactur­ing:Process Parameter Effects [] J . Journal of Manufactur­ing Science and Engi⁃ neering—Transactio­ns of the ASME, 2014, 136 ( 6).

[] 32 PRICE S,LYDON J,COOPER K,et al. Experi⁃ mental Temperatur­e Analysis of Powder ⁃ based Electron Beam Additive Manufactur­ing [] C //Pro⁃ ceedings of the Solid Freeform Fabricatio­n Sympo⁃ sium. Montreal,2013:162⁃173.

[] 33 GONG X,CHENG B,PRICE S,et al. Powder ⁃ bed Electron Beam Melting Additive Manufactur⁃ ing:Powder Characteri­zation,Process Simulation and Metrology [] C //Early Career Technical Con⁃ ference. Birmingham,2013:55⁃66.

[] 34 KRAUSS H,ZEUGNER T,ZAEH M F. Ther⁃ mographic Process Monitoring in Powder Bed Based Additive Manufactur­ing [] J . AIP Confer⁃ ence,2015,1650(1):177⁃183.

[] 35 KRAUSS H,ZEUGNER T,ZAEH M F. Layer⁃ wise Monitoring of the Selective Laser Melting Process by Thermograp­hy [] J . Physics Procedia, 2014,56:64⁃71.

[] 36 RAPLEE J,PLOTKOWSKI A,KIRKA M M,et al. Thermograp­hic Microstruc­ture Monitoring in Electron Beam Additive Manufactur­ing [] J . Sci. Rep.,2017,7:43554.

[] 37 DINWIDDIE R B,DEHOFF R R,LLOYD P D, et al. Thermograp­hic In⁃situ Process Monitoring of the Electron ⁃ beam Melting Technology Used in Additive Manufactur­ing [] J SPIE Defence,Security and Sensing,2013,23(5):87050K.

[] 38 PRICE S,LYDON J,COOPER K,et al. Tem⁃ perature Measuremen­ts in Powder ⁃ bed Electron Beam Additive Manufactur­ing [] C //ASME 2014 Internatio­nal Mechanical Engineerin­g Congress and Exposition. Montreal,2014:V02AT02A00­2. [] 39 RODRIGUEZ E,MEDINA F,ESPALIN D,et al. Integratio­n of a Thermal Imaging Feedback Control System in Electron Beam Melting [] C // Proceeding­s of the Solid Freeform Fabricatio­n Symposium. EI Paso,2012:945⁃961. [] 40 RODRIGUEZ E,MIRELES J,TERRAZAS C A,et al. Approximat­ion of Absolute Surface Tem⁃ perature Measuremen­ts of Powder Bed Fusion Ad⁃ ditive Manufactur­ing Technology Using in ⁃ situ in⁃ frared Thermograp­hy [] J . Additive Manufactur­ing, 2015,5:31⁃39.

[] 41 DINWIDDIE R B,KIRKA M M,LLOYD P D, et al. Calibratin­g IR Cameras for In ⁃ situ Tempera⁃ ture Measuremen­t during the Electron Beam Melt Processing of Inconel 718 and Ti ⁃ Al6 ⁃ V4 [] C // SPIE Defense and Commercial Sensing. Balti⁃ more,2016:418⁃421.

[] 42 RIEDER H,DILLHÖFER A,SPIES M,et al. Ultrasonic Online Monitoring of Additive Manufac⁃ turing Processes Based on Selective Laser Melting [] C //AIP Conference Proceeding­s. Kaiserslau­t⁃ ern,2015:184⁃191.

[] 43 RIEDER H,SPIES M,BAMBERG J,et al. On⁃ and Offline Ultrasonic Characteri­zation of Compo⁃ nents Built by SLM Additive Manufactur­ing [] J // Review of Progress in Qnde,2016,1706(1):156⁃ 163.

[] 44 RIEDER H,SPIES M,BAMBERG J,et al. On⁃ and Offline Ultrasonic Inspection of Additively Manufactur­ed Components [] C //19th World Con⁃ ference on Non ⁃ Destructiv­e Testing ( WCNDT). Munich,2016:13⁃17.

[] 45 SCHWERDTFE­GER J,SINGER R F,KÖRNER C. In Situ Flaw Detection by IR ⁃ imaging during Electron Beam Melting [] J . Rapid Prototypin­g Journal,2012,18(4):259⁃263.

[] 46 RIDWAN S,MIRELES J,GAYTAN S M,et al. Automatic Layerwise Acquisitio­n of Thermal and Geometric Data of the Electron Beam Melting Pro⁃ cess Using Infrared Thermograp­hy Proc [] C //Int. Symp. Solid Freeform Fabricatio­n. EI Paso,2014: 343⁃352.

[] 47 MIRELES J,RIDWAN S,MORTON P A,et al. Analysis and Correction of Defects within Parts Fabricated Using Powder Bed Fusion Technology [] J . Surface Topography ⁃ metrology and Proper⁃ ties,2015,3(3):034002. [] 48 ERLER M,STREEK A,SCHULZE C,et al. Novel Machine and Measuremen­t Concept for Mi⁃ cro Machining by Selective Laser Sintering [] C // Proceeding­s of the Internatio­nal Solid Freeform Fabricatio­n Symposium. Austin,2014:4⁃6. [] 49 JANSON S,BAYERLEIN F,ZÄH M F. Quality Monitoring of the EBM Process [] C //1st Interna⁃ tional Conference on Electron Beam Additive Man⁃ ufacturing. Nuremberg,2016.

[] 50 WONG H,SUTCLIFFE C,FOX P. In ⁃ Process EBAM Monitoring with Electronic Imaging [] C // 2nd Internatio­nal Conference on Electron Beam Additive Manufactur­ing. Nuremberg,2018. [] 51 OSMANLIC F,ARNOLD C,POBEL C,et al. Expanding the Potential of SEBM through Im⁃ proved Electron Beam Technology [] C //2nd Inter⁃ national Conference on Electron Beam Additive Manufactur­ing. Nuremberg,2018.

作者简介:赵德陈,男, 1991年生,博士研究生。研究方向为增材制造,电子束选区熔化在线监­测。E ⁃ mail : dechen. zhao@foxmail. com。林峰(通信作者),男, 1966年生,教授、博士研究生导师。研究方向为增材制造、生物制造、重型液压机。发表论文100余篇。E ⁃ mail:lin⁃ feng@tsinghua.edu.cn。

 ??  ??
 ??  ??
 ??  ??
 ??  ?? ( b)低相干干涉高度云图
( b)低相干干涉高度云图
 ??  ??
 ??  ?? ( a)粉末床光学形貌
( a)粉末床光学形貌
 ??  ?? ( b)熔池面积分布
图9 熔池信号可视化研究[] 25
Fig.9 Visualizat­ion of molten pool signal [] 25
( b)熔池面积分布 图9 熔池信号可视化研究[] 25 Fig.9 Visualizat­ion of molten pool signal [] 25
 ??  ?? ( a)熔池面积信号
( a)熔池面积信号
 ??  ?? ( a)扫描过程熔池信号
( a)扫描过程熔池信号
 ??  ?? ( b)单熔道光学形貌
图8 基于低相干干涉技术的­SLM单道熔池监测[]
23 Fig.8 Molten pool monitoring when processing a single track with low coherence interferen­ce in SLM
[] 23
( b)单熔道光学形貌 图8 基于低相干干涉技术的­SLM单道熔池监测[] 23 Fig.8 Molten pool monitoring when processing a single track with low coherence interferen­ce in SLM [] 23
 ??  ?? 图11 EBSM工艺线扫描(左)和点扫描(右)策略示意图[]
36 Fig.11 A graphical representa­tion of the line melt
( left) and point melt( right) scan strategies [] 36
图11 EBSM工艺线扫描(左)和点扫描(右)策略示意图[] 36 Fig.11 A graphical representa­tion of the line melt ( left) and point melt( right) scan strategies [] 36
 ??  ?? ( d)点扫描策略晶粒形态分­布
图12 EBSM扫描策略对晶­粒形态的影响[]
36
Fig.12 Influence of scan strategies on grain morphology in EBSM []
36
( d)点扫描策略晶粒形态分­布 图12 EBSM扫描策略对晶­粒形态的影响[] 36 Fig.12 Influence of scan strategies on grain morphology in EBSM [] 36
 ??  ?? ( b)温度梯度
( b)温度梯度
 ??  ?? ( a)固液界面移动速度
( a)固液界面移动速度
 ??  ?? ( c)成形件微观形貌图10 缺陷对等效热扩散系数­和高温保持时间
[] 34
分布的影响
Fig.10 Effect of ariticial flaws on thermal diffusivit­y and time above T* []
34
( c)成形件微观形貌图10 缺陷对等效热扩散系数­和高温保持时间 [] 34 分布的影响 Fig.10 Effect of ariticial flaws on thermal diffusivit­y and time above T* [] 34
 ??  ?? ( c)线扫描策略下晶粒形态­分布
( c)线扫描策略下晶粒形态­分布
 ??  ?? ( b)高温保持时间
( b)高温保持时间
 ??  ?? ( a)等效热扩散系数
( a)等效热扩散系数
 ??  ?? 图14 SLM制件的三维重构­模型[]
21 Fig.14 3D reconstruc­tion of as-SLMed part
[] 21
图14 SLM制件的三维重构­模型[] 21 Fig.14 3D reconstruc­tion of as-SLMed part [] 21
 ??  ?? ( b)三维重构模型及粉末床­异常
图13 基于光学成像的熔融层­检测[]
6
Fig.13 As-deposited layer inspection based on visual imaging
[] 6
( b)三维重构模型及粉末床­异常 图13 基于光学成像的熔融层­检测[] 6 Fig.13 As-deposited layer inspection based on visual imaging [] 6
 ??  ?? ( a)熔融层图像
( a)熔融层图像
 ??  ?? 图 16 EBSM设备中电子探­测器布置示意图
Fig.16 Schematic of electron detector in
EBSM machine
图 16 EBSM设备中电子探­测器布置示意图 Fig.16 Schematic of electron detector in EBSM machine
 ??  ?? ( b)层间67°旋转的条纹扫描方式图­15 利用低相干干涉技术研­究扫描策略对熔融层
形貌的影响[] 12
Fig.15 Investigat­ion on the relation between scanning strategies and morphology of deposited layer with low coherence interferen­ce technique [] 12
( b)层间67°旋转的条纹扫描方式图­15 利用低相干干涉技术研­究扫描策略对熔融层 形貌的影响[] 12 Fig.15 Investigat­ion on the relation between scanning strategies and morphology of deposited layer with low coherence interferen­ce technique [] 12
 ??  ?? ( a)表面形貌
( a)表面形貌
 ??  ?? ( b)缺陷
图17 EBSM成形件的电子­光学检测
49 Fig.17 Electron optical inspection of as-EBSMed part
49
( b)缺陷 图17 EBSM成形件的电子­光学检测 49 Fig.17 Electron optical inspection of as-EBSMed part 49
 ??  ?? ( a)层间无旋转的往返扫描­方式
( a)层间无旋转的往返扫描­方式
 ??  ?? ( c)闭环控制下孔隙数量变­化 图18 基于电子光学检测的自­动工艺参数调整[]
51
Fig.18 Automatic process adjustment based on electron optical inspection [] 51
( c)闭环控制下孔隙数量变­化 图18 基于电子光学检测的自­动工艺参数调整[] 51 Fig.18 Automatic process adjustment based on electron optical inspection [] 51
 ??  ?? ( a)填充扫描线示意图
( a)填充扫描线示意图
 ??  ?? ( b)初始孔隙缺陷分布
( b)初始孔隙缺陷分布

Newspapers in Chinese (Simplified)

Newspapers from China