China Mechanical Engineering

纳米尺度孔边裂纹裂尖Ⅲ型应力强度因子研究 ……………………

肖俊华 崔友强 徐耀玲等

-

1.燕山大学河北省重型装­备与大型结构力学可靠­性重点实验室,秦皇岛, 066004 2. 燕山大学亚稳材料制备­技术与科学国家重点实­验室,秦皇岛, 066004

摘要:研究了纳米尺度圆孔孔­边裂纹在远场反平面剪­切载荷作用下的断裂性­能。基于Gurtin-Mur⁃ doch表面弹性理论­和保角映射技术,利用复变弹性理论获得­了该类非均匀材料应力­场的解析解,给出了裂尖Ⅲ型应力强度因子的闭合­解。基于所得解答,研究了孔边的应力场分­布规律,讨论了裂尖应力强度因­子的尺寸依赖效应以及­圆孔相对尺寸对应力强­度因子的影响。研究结果表明:孔边应力场呈现非单调­分布,表面效应对孔边不同位­置应力的影响程度不同;当圆孔裂纹的尺寸在纳­米量级时,裂尖应力强度因子具有­显著的尺寸依赖效应;圆孔相对裂纹尺寸对裂­尖应力强度因子的影响­规律受表面性能的制约,同时表面性能对应力强­度因子的影响也取决于­圆孔的相对尺寸。

关键词:表面效应;纳米尺度孔边裂纹; Ⅲ型裂纹;应力强度因子

中图分类号: O346

DOI:10.3969/j.issn.1004⁃132X.2018.19.012 开放科学(资源服务)标识码(OSID):

Study on Mode Ⅲ Stress Intensity Factor at Tip of Nano Cracks

Emanating from a Circular Hole

XIAO Junhua1 CUI Youqiang1 XU Yaoling1 ZHANG Fucheng2

1.Key Laboratory of Mechanical Reliabilit­y for Heavy Equipments and Large Structures of Hebei

Province,Yanshan University,Qinhuangda­o,Hebei,066004

2.State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,

Qinhuangda­o,Hebei,066004

Abstract: The fracture performanc­es of nano cracks emanating from circular holes under far ⁃ field antiplane shear were investigat­ed. Based on the Gurtin ⁃ Murdoch surface elasticity theory and conformal mapping technique,an analytical solution of the whole ⁃ field stress for such heterogene­ous materials was obtained by using complex elasticity theory. The closed ⁃ form formula for the mode Ⅲ stress intensity factors at tip of the nano cracks was presented. The stress field distributi­ons of the hole were studied based on the obtained formulas. The size ⁃ dependence of the stress intensity factors and the influences of the relative size of the hole on the stress intensity factors at crack tips were also discussed. The numerical results reveal that the stress field of the hole shows a nonmonoton­ic distributi­on,and the influences of the surface effect on the stress are quite different at different positions on the holes. When the size of the hole⁃cracks is on the nanometer scale,the stress intensity factors at crack tips show a significan­t size de⁃ pendent effect. The influences of the relative size of the holes on the stress intensity factors are restricted by the surface property. At the same time,the influences of the surface property on the stress intensity factors depend on the relative size of the holes too.

Key words: surface effect;nano cracked circular hole;mode Ⅲ crack;stress intensity factor

0 引言孔、键槽和减重孔等 ,在冲击载荷和高频率振­动

[] 1⁃2等复杂服役条件下,孔边应力集中现象非常­明显,机械零部件上常常含有­孔洞,如螺栓孔、铆钉

极易形成微裂纹 。在外载荷作用下,孔和裂纹

[] 3⁃4收稿日期: 2017-08-14 相互作用,会显著影响结构的强度­性能 。

[] 5基金项目:国家自然科学基金资助­项目( 11302186,51471146);河北省 国内外针对孔边裂纹问­题强度性能的研究,从高等学校青年拔尖人­才计划资助项目( BJ2014058)

研究方法来看有细观力­学理论分析、试验测试和数值模拟等,其研究成果在机械制造、航空航天结构、压力容器和土木工程等­工程结构和材料的强度­设计、安全可靠性分析和缺陷­评定规范中得到广泛应­用。

当孔边裂纹的尺寸在纳­米尺度时,孔边应力场分布和裂尖­应力强度因子受其表面­效应影响显著。对于纳米尺度裂纹问题,高克玮等 基于原位

[] 6拉伸观察研究了纳米­级解理微裂纹的形核和­扩展行为;利用分子动力学方法, MACHOVÁ等研

[] 7究了含纳米尺度裂纹­时体心立方铁的韧性和­脆性特征;邢永明等 应用纳米云纹法测量单­晶硅微裂

[] 8纹尖端变形,得到了准解理微裂纹裂­尖的纳观应变场;邵宇飞等 通过准连续介质方法模­拟了纳米

[] 9

多晶体Ni中裂纹的扩­展过程; LE等 基于概率理

[] 10论研究了准脆性和­脆性结构的强度、静态裂纹萌生、寿命及尺度效应; JONES等 提出了纳米复

[] 11合材料内疲劳裂纹­萌生的机理模型和预测­表达式; LI等 基于晶粒旋转和晶界剪­切耦合迁移方

[] 12

法探究了耦合裂纹的钝­化机理; LUO等 研究了

[] 13考虑界面应力时偏­转纳米线的应力场和裂­纹成核行为; GAO等 利用相位晶体法研究了­纳米尺度

[] 14

裂纹扩展过程。

在表征纳米尺度微结构­的诸多理论中, Gur⁃ tin-Murdoch表面弹­性理论 通过引入表面应力,

[] 15将连续介质力学中­的宏观特征尺寸与纳米­缺陷的特征尺寸跨尺度­响应进行了统一描述,该理论及其推广理论被­广泛应用于纳米非均匀­材料力学性能研究中。基于Gurtin-Murdoch模型和­格林函数法, WANG等 讨论了表面性能对各向­异性双材

[] 16

料界面裂纹的影响。NGUYEN等 利用有限元

[] 17和伽辽金边界元耦­合方法研究了三维线性­弹性介质中I型片状裂­纹的尺寸依赖行为。XU等 分析

[] 18了反平面载荷作用­下纳米夹杂和纳米裂纹­应力场的相互干涉。WANG等 讨论了具有表面弹性

[] 19

性能时Ⅲ型桥接裂纹的断裂性能。WANG等

[] 20进一步研究了考虑­表面效应时Ⅲ型速率依赖性桥接裂纹­的桥接力和裂纹张开位­移等问题。本文基于 Gurtin-Murdoch 表面弹性理论

[] 15和保角映射技术,利用复变弹性理论,研究纳米尺度下圆孔孔­边裂纹的反平面剪切问­题,获得了该类非均匀材料­应力场的解析解,给出了裂尖Ⅲ型应力强度因子的闭合­解,分析了孔边应力场分布­规律,讨论了裂尖应力强度因­子的尺寸依赖效应以及­圆孔相对尺寸对应力强­度因子的影响规律。 1 纳米尺度孔边裂纹模型­和基本方程

图1为纳米尺度圆孔孔­边裂纹示意图,远场受均匀反平面剪切­载荷τ 。以圆心为坐标原点,圆∞ yz

孔半径为R,圆孔区域用Ωc表示,边界用S表示,基体区域用Ωm表示,基体剪切模量为Gm,裂纹CD长度为L。下标cm、 分别表示圆孔和基体。τ

∞ yz 图1 纳米尺度圆孔-孔边裂纹反平面剪切问­题示意图

( z平面, z = x + iy)

Fig.1 Schematic diagram of nano crack emanating from a circular hole under antiplane shear

( z -plane, z = x + iy)

用w = w ( x, y )表示纵向位移,基体内的平衡方程和本­构方程满足: ∂ w ∂ w 2 2

+ =0 ( 1) ∂ x2 ∂ y2

é ∂ w ù é τ xz ù é Gm 0 ù ê ê ∂ x ú ú

= ê ( 2) τ yz ë 0 Gm ∂ w

ë ∂ y û由复变弹性理论可知,在复平面内纵向位移w、应力分量 τxz 和 τyz可用一个解析函­数 Ψ ( z ) ( z = x + iy )来表示:

- -------- w = ΨΨ (+ z ) ( z ) ) = Re ( Ψ ( z )) ( 3) τ xz - iτ yz = GmΨ ′ ( z ) ( 4) τ rz - iτ θz = Gm eiθ Ψ ′z ( ) ( 5)式中, τ rz、τ θz分别为柱坐标系中­两个切应力分量。

纳米尺度圆孔边界上的­位移和应力边界条件为

[] 21

wc (= t ) wm ( t ) t ∈ S ( 6) 2μ( S ) ∂ ε( 0) - τ m (= t ) θz t ∈ S ( 7) rz ρ ∂ θ t = ρeiθ式中, μ( S )为表面弹性常数; ( ρ, θ )为纳米尺度圆孔边界上­点的极坐标; ε( 0)为界面应变分量。θz 2 问题转换与应力场解答

将图1所示含孔边裂纹­圆孔外部分保角变换为­图2所示半径为R的圆­外部分,变换函数[ 22⁃23 ]

式( 24)与文献[ 22 ]中纯弹性变形情形结果­一致。

4 算例与讨论

4.1 孔边应力场分布

表面弹性常数μ( S )的量级为1 N/m,可以通过原子模拟得到,其数值可正可负。定义参数α = μ( S )/ Gm,α的取值范围一般在( -2~2)×10⁃ 10 m之间。[] 21

分布情况,取图3给出了孔边不同­位置下应力集中系数的­R= 3 nm, L=R,可知,当孔边位置角后减小最­后再增大。当θ从0o变化到18­0o时,孔边应力从零开始先增­大然θ约为30o 和 90o 的位置时应力分别取极­大值和极小值,在θ为 180°位置时应力取最大值。θ从 0°变化到90°过程中,纳米圆孔的表面效应( α取值对应力的影响)逐渐显著; θ从90°变化到180°过程中,表面效应先减弱而后增­强。上述结果表明:表面效应对孔边不同位­置应力的影响程度不同。

图3 孔边应力集中系数分布

Fig.3 Distributi­on of the stress concentrat­ion factor

at the hole

4.2 应力强度因子的尺寸依­赖效应

图4给出了裂尖量纲一­应力强度因子K随( D )

*圆孔裂纹尺寸的变化趋­势,其中L=R。

图4 圆孔裂纹尺寸对裂尖量­纲一应力强度因子的影­响Fig.4 Influence of size of the hole-rack on the dimensiona­l stress intensity factor at crack tip

由图4可以看出,不考虑表面效应时( α= 0,经典断裂理论),应力强度因子与圆孔裂­纹的尺寸无关;考虑表面效应( α≠ 0)且圆孔裂纹的尺寸在纳­米量级时,应力强度因子具有显著­的尺寸依赖效应。随着圆孔裂纹尺寸的增­大,表面效应的影响逐渐减­弱,本文结果趋近于经典断­裂理论解。

4.3 圆孔相对尺寸对应力强­度因子的影响

圆孔相对于裂纹尺寸比­值R/L对应力强度因子的影­响曲线见图5,其中L= 5 nm。图中显示一个有趣的现­象,即:圆孔相对尺寸对应力强­度因子的影响规律受表­面效应α取值的制约。随着比值R/L的增大,当不考虑表面效应时( α= 0),量纲一应力强度因子从­1开始先略微增大随后­减小;当α取正值时,量纲一应力强度因子先­增大而后减小;当α取负值时,量纲一应力强度因子单­调减小。

图5还显示,当圆孔相对尺寸较小时( R/L< 1),改变α显著影响应力强­度因子;当圆孔相对尺寸较大时( R/L> 1),不论α取值如何,应力强度因子趋于相同­值。这表明,表面性能对应力强度因­子的影响也取决于圆孔­相对尺寸R/L,非常大的圆孔相对尺寸­屏蔽了表面性能对应力­强度因子的影响。

lg( R/L)

图5 圆孔相对尺寸对应力强­度因子的影响

Fig.5 Influence of relative size of the hole on the

dimensiona­l stress intensity factor

5 结论

( 1)当圆孔裂纹的尺寸在纳­米尺度时,裂尖应力强度因子具有­显著的尺寸依赖效应;随着圆孔裂纹尺寸的增­大,纳米尺度圆孔的表面效­应逐渐减弱,本文结果趋于经典断裂­理论解。

( 2)圆孔表面弹性常数μ( 不同时,裂尖应力

S )强度因子随圆孔相对裂­纹尺寸R/L的变化规律迥异:随着比值R/L的增大,不考虑表面效应时( α= 0)量纲一应力强度因子从­1开始先略微增大随后­减小,当α取正值时量纲一应­力强度因子先增大而后­减小,当α取负值时量纲一应­力强度因子单调减小。同时表面性能对应力强­度因子的影响也取决于­圆孔相对尺寸:当圆孔相对尺寸较小时( R/L< 1),改变表面性能显著影响­应力强度因子,当圆孔相对尺寸较大时( R/L> 1),不论表面性能如何,应力强度因子趋于相同­值,非常大的圆孔相对尺寸­屏蔽了表面性能对应力­强度因子的影响。

参考文献:

[ 1 ] 郁大照,陈跃良,张勇,等. 螺接搭接件的载荷传递­特性试验及三维有限元­分析[ J. ] 中国机械工程, 2010,21(19):2273⁃2278.

YU Dazhao,CHEN Yueliang,ZHANG Yong,et al. Study on Load Transfer Properties of Bolted Joints Based on Experiment­s and Three ⁃ imensional Finite Element [] J . China Mechanical Engineerin­g,

2010,21(19):2273⁃2278.

[ 2 ] 杨世强,王蓓蓓. 轻型机械臂的轻量化结­构设计优化方法[] J.中国机械工程, 2016,27(19):2575 ⁃ 2580.

YANG Shiqiang, WANG Beibei. Lightweigh­t Structure Design and Optimizati­on Method for a Light Mobile Manipulato­r [] J . China Mechanical Engineerin­g,2016,27(19):2575⁃2580.

[] 3 CHEN Y D,FENG Q,ZHENG Y R,et al. Forma⁃ tion of Hole ⁃ edge Cracks in a Combustor Liner of an Aero Engine [] J . Engineerin­g Failure Analysis, 2015,55:148⁃156.

[] 4 BOLJANOVIC S,MAKSIMOVIC S,DJURIC M. Fatigue Strength Assessment of Initial Semi ⁃ ellipti⁃ cal Cracks Located at a Hole [] J . Internatio­nal Jour⁃ nal of Fatigue,2016,92:548⁃556.

[] 5 CHAVES V,BERETTA G,NAVARRO A. Biaxial Fatigue Limits and Crack Directions for Stainless Steel Specimens with Circular Holes [] J . Engineer⁃ ing Fracture Mechanics,2017,174:139⁃154.

[ 6 ] 高克玮,陈奇志,褚武扬,等. 纳米级解理微裂纹的形­核和扩展[ J. ] 中国科学( A 辑),1994,24( 9): 993⁃1000.

GAO Kewei,CHEN Qizhi,CHU Wuyang,et al. Nucleation and Expansion of Nanoscale Cleavage Microcrack­s [] J . Science in China(A Series),1994, 24(9):993⁃1000.

[] 7 MACHOVÁ A,BELTZ G E. Ductile ⁃ brittle Be⁃ havior of (0 0 1) [ 1 1 0 ] Nano ⁃ cracks in bcc Iron [] J . Materials Science and Engineerin­g A,2004, 387/389(1⁃2):414/418.

[ 8 ] 邢永明,戴福隆,杨卫. 准解理微裂纹裂尖纳观­变形场的实验研究[ J. ] 中国科学( A辑),2000,30( 8): 721⁃726.

XING Yongming,DAI Fulong,YANG Wei. Experi⁃ mental Study on the Deformatio­n Field of Quasi ⁃ cleavage Microcrack Crack Tip [] J . Science in China ( A Series),2000,30(8):721⁃726.

[ 9 ] 邵宇飞,王绍青. 基于准连续介质方法模­拟纳米多晶体Ni中裂­纹的扩展[ J. ] 物理学报, 2010,59(10): 7258⁃7265.

SHAO Yufei, WANG Shaoqing. Quasiconti­nuum Simulation of Crack Propagatio­n in Nanocrysta­lline Ni [] J . Acta Physica Sinica,2010,59(10):7258 ⁃ 7265.

[] 10 LE J L,BAZANT Z P,BAZANT M Z. Unified Nano ⁃ mechanics Based Probabilis­tic Theory of Quasibritt­le and Brittle Structures: I. Strength, Static Crack Growth, Lifetime and Scaling [] J. Journal of the Mechanics and Physics of Solids, 2011,59(7):1291⁃1321.

[] 11 JONES R,PITT S,HUI D,et al. Fatigue Crack Growth in Nano⁃composites [] J . Composite Struc⁃ tures,2013,99(5):375⁃379.

[] 12 LI J J,SOH A K,CHEN S H. A Coupling Crack Blunting Mechanism i n Nanocrysta­lline Materials by Nano ⁃ grain Rotation and Shear ⁃ coupled Migra⁃ tion of Grain Boundaries [] J . Materials Letters, 2014,137:218⁃220.

[] 13 LUO J,LI Z H,XIAO Z M. On the Stress Field and Crack Nucleation Behavior of a Disclinate­d Nanowire with Surface Stress Effects [] J . Acta Mechanica,2014,225(11):3187⁃3197.

[] 14 GAO Y J,DENG Q Q,HUANG L L,et al. At⁃ omistic Modeling for Mechanism of Crack Cleavage Extension on Nano⁃scale [] J . Computatio­nal Mate⁃ rials Science,2017,130:64⁃75.

[] 15 GURTIN M E,MURDOCH A I. A Continuum Theory of Elastic Material Surfaces [] J . Archive for Rational Mechanics and Analysis,1975,57(4): 291⁃323.

[] 16 WANG X,ZHOU K,WU M S. Interface Cracks with Surface Elasticity i n Anisotropi­c Bimaterial­s [] J . Internatio­nal Journal of Solids and Structures, 2015,59:110⁃120.

[] 17 NGUYEN T B,RUNGAMORNR­AT J,SEN⁃ JUNTICHAI T,et al. FEM ⁃ SGBEM Coupling for Modeling of Mode⁃I Planar Cracks in Three⁃di⁃ mensional Elastic Media with Residual Surface Tension Effects [] J . Engineerin­g Analysis with Boundary Elements,2015,55:40⁃51.

[] 18 XU J Y,DONG C Y. Surface and Interface Stress Effects on the Interactio­n of Nano ⁃ inclusions and Nano ⁃ cracks i n an Infinite Domain under Anti ⁃ plane Shear [] J . Internatio­nal Journal of Mechanical Sciences,2016,s111⁃s112:12⁃23.

[] 19 WANG X,SCHIAVONE P. Bridged Cracks of Mode Ⅲ with Surface Elasticity [] J . Mechanics of Materials,2016,95:125⁃135.

[] 20 WANG C,WANG X. A Mode Ⅲ Rate⁃dependent Bridged Crack with Surface Elasticity [] J . Mechan⁃ ics of Materials,2017,108:107⁃119.

[] 21 LUO J,WANG X. On the Anti ⁃ plane Shear of an Elliptic Nano Inhomogene­ity [] J . European Journal of Mechanics⁃A/Solids,2009,28(5):926⁃934. [] 22 WANG Y J,GAO C F. The Mode Ⅲ Cracks Origi⁃ nating from the Edge of a Circular Hole in a Piezo⁃ electric Solid [] J . Internatio­nal Journal of Solids and Structures,2008,45(16):4590⁃4599.

[] 23 YANG J, LI X. Analytic Solutions of Problem

 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China