Chinese Journal of Ship Research

自主式水下机器人控制­系统及声呐目标识别

-

根据仿真结果,从航向变化图曲线来看,3种AUV控制器下的 实际航向角均能收敛至­目标值FOPID附近,而遗传算法整定的 的超调量显著小2于其­它 个控制器。因此,采用遗传算法整定的F­OPID控制器得到的­效果最好,其次为采用遗传IOP­ID,最后为试凑法整定的I­OPID。算法整定的 4 3此外,本文还计算了 种仿真情况下 个控制器的上升时间、超调量、超调量百分比、稳态误差1和稳态误差­百分比,相应结果在表 中列出。1 FOPID由表 可知,遗传算法整定的 控制器得到的航向曲线­的超调量和稳态误差值­均比遗传IOPID算­法和试凑法整定 控制器的小,而上升时IOPID间­几乎一致。虽然试凑法整定的 控制器得到的航向曲线­具有稳态误差较小的特­点,但其超调量较大。考虑到在航行器的控制­上,超调量过大会直接导致­控制性能变差甚至是失­控,因此,超调量对控制性能的影­响应当摆在首要考虑位­置。

10°~40°的多组仿真实验中此外,以上结论在定向 FOPID均成立,说明遗传算法整定 在航向控制上IOPI­D普遍优于遗传算法和­试凑法整定的 。综FOPID合以上分­析,遗传算法整定的 具有更好的性能。

5结语

AUV本文针对 航向自动控制的问题,提出了λ μ一种基于遗传算法的­分数阶 PI D 控制器的设计λ方案。仿真表明,基于遗传算法得到的分­数阶PI Dμ控制器在航向控制­过程中比基于遗传算法­的整数PID PID阶 控制器和常规试凑法 控制器具有更好的动态­性能。该方法可以对常规的航­向自动舵进行改进,不仅减少了参数整定的­工作量,还提高了控制器性能,具有较高的应用价值。

参考文献:

[ 1] 魏延辉,杜振振,陈巍,等. 多翼自治水下机器人动­力学建模与姿态控制[J]. 华中科技大学学报(自然科学版),2015,43(6):106-111.

WEI Y H , DU Z Z ,CHEN W,et al. Dynamic model⁃ ing for multi-wing autonomous underwater vehicle mo⁃ tion control system[J]. Journal of Huazhong Universi⁃ ty of Science and Technology (Natural Science Edi⁃ tion),2015,43(6):106-111(in Chinese). [ 2]崔荣鑫,徐德民,许喆,等. 基于 Simulink/VRML 的自主水下航行器编队­控制仿真[J]. 系统仿真学报, 2007,19(13):2881-2884,2894. CUIRX , XU D M , XUZ ,et al. Simulation of autono⁃ mous underwater vehicles formation control based on Simulink and VRML[J]. Journal of System Simula⁃ tion,2007,19(13):2881-2884,2894(in Chinese). [ 3] 赵蕊,余琨,郑文成,等. 无人水下航行器分布式­运

J].动控制系统设计与仿真­验证[ 中国舰船研究, 2014,9(6):92-99. ZHAO R, YUK ,ZHENG W C,et al. Design and sim⁃ ulation of the distribute­d motion control system for un⁃ manned underwater vehicles[J]. Chinese Journal of Ship Research,2014,9(6):92-99(in Chinese). [4] LEE G,SURENDRAN S,KIM S H. Algorithms to con⁃ trol the moving ship during harbour entry[J]. Applied Mathematic­al Modelling,2009,33(5):2474-2490. [5] FANG M C,ZHUO Y Z,LEE Z Y. The applicatio­n of the self-tuning neural network PID controller on the ship roll reduction in random waves[J]. Ocean Engi⁃ neering,2010,37(7):529-538. 6] 陈佳,邢继峰. PID [ 基于模糊自适应 的潜艇深度控制[J]. 舰船科学技术,2011,33(2):56-60. 13 CHEN J,XING J F. Depth control of submarine based on fuzzy adaptive PID[J]. Ship Science and Technolo⁃ gy,2011,33(2):56-60(in Chinese). 7] 薛定宇,赵春娜. PID [ 分数阶系统的分数阶 控制器设计[J]. 控制理论与应用,2007,24(5):771-776. XUE D Y ,ZHAO C N. Fractional order PID controller design for fractional order system[J]. Control Theory & Applicatio­ns, 2007, 24(5): 771-776 (in Chi⁃ nese). [8] TEHRANI K A AMIRAHMADI A RAFIEI S M R, , , et al. Design of fractional order PID controller for boost converter based on multi-objective optimizati­on[C]// Proceeding­s of 2010 14th Internatio­nal Power Electron⁃ ics and Motion Control Conference (EPE/PEMC). Ohrid,Macedonia:IEEE,2009:T3-179-T3-185. [9] FAN Y S SUN X J ,WANG G F,et al. On fuzzy , self-adaptive PID control for USV course[C]//Proceed⁃ ings of the 34th Chinese Control Conference. Hang⁃ zhou,China:IEEE,2015:8472-8478. 10] ,等. PID [ 王芳荣,阚如文,王昕 无人水下航行器制[J].神经网络解耦控 吉林大学学报(工学版), 2012,42(增刊 1):387-391. WANG F R, KAN R W ,WANG X,et al. PID neural network decoupling control of unmanned underwater vehicle[J]. Journal of Jilin University (Engineerin­g and Technology Edition), 2012, 42(Supp 1): 387-391(in Chinese). 11]刘金锟. PID MATLAB仿真[M] .3版. [ 先进 控制 北京:电子工业出版社,2011. [12] FOSSEN T I. Handbook of marine craft hydrodynam⁃ ics and motion control [M]. Chichester: Wiley, 2011. 13] 王春阳,李明秋,姜淑华,等. [ 分数阶控制系统设计[M]. 北京:国防工业出版社,2014.

14] 张迪. Caputo分数阶微­分算子性质研究[J].

[ 佳木斯大学学报(自然科学版),2014,32(3):465-467. ZHANG D. Research on properties of caputo fraction⁃ al derivative operations[J]. Journal of Jiamusi Univer⁃ sity(Natural Science Edition),2014,32(3):465-467. [15] PETRÁŠ. Fractional-order feedback control of a DC motor[J]. Journal of Electrical Engineerin­g,2009, 60(3):117-128. [16] MONJE C A,VINAGRE B M,FELIU V,et al. Tun⁃ ing and auto-tuning of fractional order controller­s for industry applicatio­ns[J]. Control Engineerin­g Prac⁃ tice,2008,16(7):798-812. 17] 严浙平,段海璞. UUV Terminal [ 航迹跟踪的双闭环J]. 2015,10(4):滑模控制[ 中国舰船研究, 112-117,142.

YAN nal sliding Z P ,DUAN mode controller H P. A double for the closed-loop trajectory tracking Termi⁃ of UUV[J]. Chinese Journal of Ship Research, 2015,10(4):112-117,142(in Chinese). [ 18] 马永杰,云文霞. 遗传算法研究进展[J]. 计算机应用研究,2012,29(4):1201-1206,1210. MA Y J ,YUN W X. Research progress of genetic al⁃ gorithm [J]. Applicatio­n Research of Computers, 2012,29(4):1201-1206,1210(in Chinese). [19] BAGHERI H,GHASSEMI H,DEHGHANIAN A. Optimizing the seakeeping performanc­e of ship hull 86 (上接第 页) [10] XIONG Z,CHEN J H,WANG R,et al. A new dy⁃ namic vectorform­ed informatio­n sharing algorithm in federated filter[J]. Aerospace Science and Technolo⁃ gy,2013,29(1):37-46. [11] HUANG J,YAN B. Federated filter based on dynam⁃ ic informatio­n allocation with unscented Kalman filter [C]//Proceeding­s of the 2nd Internatio­nal Conference on Electrical,Computer Engineerin­g and Electronic­s. Jinan,China:Atlantis Press,2015:911-916. 12] 赵琳,王吓弟,高伟. [ 联邦滤波器理论及其在­组合

J].导航系统中的应用[ 哈尔滨工程大学学报, 2000,21(6):5-9. forms using genetic algorithm[J]. Internatio­nal Jour⁃ nal on Marine Navigation and Safety of Sea Transpor⁃ tation,2014,8(1):49-57. [ 20] 甘世红,吴燕翔,李军军,等. 基于遗传算法的模

糊控制型船舶自动驾驶­仪研究[ J]. 中国造船, 2011,52(1):173-179. GAN S H , WU Y X , LI J J ,et al. Investigat­ion of fuzzy ship autopilot based on the genetic algorithm [J]. Shipbuildi­ng of China,2011,52(1):173-179 (in Chinese). ZHAO L,WANG X D,GAO W. Theory of federated filter and its applicatio­n in integrated navigation sys⁃ tem[J]. Journal of Harbin Engineerin­g University, 2000,21(6):5-9(in Chinese). 13] 秦永元,张洪钺,汪叔华. [ 卡尔曼滤波与组合导航­原理[M] .2版. 西安:西北工业大学出版社,2012. 14] 张晓娟,梁捷. AUV [ 基于扩展卡尔曼滤波器­的 导J]. 2016,35(6):航定位数据融合[ 测控技术, 33-36,41. ZHANG X J,LIANG J. Data fusion for AUV naviga⁃ tion and positionin­g based on extended Kalman filter [J]. Measuremen­t & Control Technology,2016,35 (6):33-36,41(in Chinese).

 ??  ??
 ??  ??
 ??  ?? 图6 40°下的航向变化图定向F­ig.6 Heading angle change at 40°
图6 40°下的航向变化图定向F­ig.6 Heading angle change at 40°

Newspapers in Chinese (Simplified)

Newspapers from China