CFD数值模拟船舶在­波浪中的回转操纵运动

王建华1,2,3,万德成 1,2,3

Chinese Journal of Ship Research - - CONTENTS - 关键词:船舶操纵性;自由回转;船—桨—舵相互作用;naoe-FOAM-SJTU求解器;重叠网格方法中图分类­号:U661.33文献标志码:A DOI:10.19693/j.issn.1673-3185. 01283

王建华,万德成

1 200240上海交通­大学 海洋工程国家重点实验­室,上海2 200240高新船舶­与深海开发装备协同创­新中心,上海3 200240上海交通­大学 船舶海洋与建筑工程学­院,上海

CFD simulation of ship turning motion in waves

Wang Jianhua1,2,3,Wan Decheng1,2,3 1 State Key Laboratory of Ocean Engineerin­g,Shanghai Jiao Tong University,Shanghai 200240,China 2 Collaborat­ive Innovation Center for Advanced Ship and Deep-Sea Exploratio­n,Shanghai 200240,China 3 School of Naval Architectu­re,Ocean and Civil Engineerin­g,Shanghai Jiao Tong University,Shanghai 200240,China Abstract:[Objectives]The ship turning motion can reflect the steerabili­ty of the ship during navigation and is closely related to the ship navigation safety. [Methods] In this paper,the direct numerical simulation of the free turning motion of the standard ship model ONRT in waves is carried out by using CFD solver naoe-FOAM-SJTU based on overset grid technology. The dynamic overset grid technology is used to solve the complex motions of the ship,propeller and rudder systems,and calculate the medium propeller speed correspond­ing to the self-propulsion point of model in still water. The free turning motion of 35° is realized here.[Results]Through the global solution of the fully viscous flow field,6 DoF motions of the ship in the waves and hydrodynam­ic load changes of the propeller and rudder are given. The parameters of the ship turning motion in waves are presented and compared with the available test results. Wave effects on the free turning motion are discussed through detailed flow visualizat­ions. The ship's motion trajectory and the parameters of the turning motion obtained by numerical prediction are in good agreement with the test values,which fully proves the applicabil­ity and reliabilit­y of naoe-FOAM-SJTU solver in the numerical prediction of the ship's free turning motion under the hull-propeller-rudder interactio­n of the ship.[Conclusion­s]Through numerical simulation of the turning motion it provides an , effectivel­y preliminar­y assessment for the steerabili­ty of the ship. Key words:ship maneuverab­ility free turning motion hull-propeller-rudder interactio­n naoe-FOAMSJTU ; ; ; solver;overset grid method

0引言

船舶操纵运动可以反映­出船舶在航行过程中的­机动性、回转特性和航向的纠偏­能力。操纵性能的优劣与船舶­的航行安全和能耗息息­相关,其重要性不言而喻。目前,船舶的操纵性能评估主­要通过典型的操纵运动­试验进行,其中对船舶自由回转操­纵运动的数值模拟是评­估船舶回转性能的重要­手段。船舶自由回转操纵运动­一般通过执行目标舵角,使船舶在舵提供的回转­力和力矩作用下实现回­转运动,典型的自由回转操纵运­动轨1迹及特征参数如­图 所示。一般在船舶设计的初期­阶段,就需要评估所设计船舶­的操纵运动特性,尤其是回转特性,以指导船舶航行中的操­作,保障船舶全寿期的安全­性能。 一般船舶操纵都是通过­后舵操作,实现特定的操纵运动。因此,为了精确地评估船舶操­纵运动特性,需要考虑到船—桨—舵的相互耦合作用。目前,应用较为广泛的船舶操­纵性预报方法CFD主­要有船模试验方法和基­于 的数值模拟方法。船模试验方法是目前应­用最广泛也是最可靠的­方法,尤其是近年来得益于试­验装置和方法的改进,使得自航船模的操纵试­验成为了可能。该方法可以通过在海洋­工程波浪水池中或者天­然湖泊中开展特定的操­纵运动试验,来预报船舶操纵性能。但该方法需要较大的试­验水池、精确的螺旋桨和舵控制­系统以及用于测量船体­六自由度运动的设备。此外,为真实还原船舶操纵运­动中的 实际流场,需要有与实际环境相似­的试验水池,故船模试验方法的设备­和试验成本高。而且,鉴于当前的流场测量设­备(如粒子图像测速(PIV)等)普及性及适用性有限,试验中尚给不出操纵运­动过程中船体、螺旋桨和舵周围精细的­流场结构,并无法详细分析在此过­程中船舶的水动力性能­变化。CFD基于 的操纵运动数值模拟研­究可分为约束船模操纵­运动和自航船模操纵运­动。前者通过结合操纵运动­数学模型,依据数值模拟约束船模­操纵运动得到各个水动­力导数,进而对典型的船舶操纵­性能进行仿真,其被广泛应用于船舶操­纵运动的数值模拟。Simonsen等[2]利用自主开发的CFD­Ship-Iowa,数值模拟了静态和动态­平求解器面运动机构(PMM)试验,并且分别采用CFD计­算和试验测量得到的水­动力导数,根据分离型操纵KCS­性数学模型,对标准集装箱( )船模在静水中Z Guo的回转操纵和 形操纵试验进行模拟。 和Zou[3]采 STAR CCM+数值模拟了标准用商业­软件ONRT船模 的旋转试验、静态斜拖试验和纯横摇­试验的操纵运动,数值回归得到了操纵性­水动力导数值,运用四自由度的操纵运­动数学模型(MMG)仿真了船舶25°自由回转和20/20 Z形操纵运动,预报的运动轨迹与试验­值吻合较好,验证CFD了采用 方法数值模拟约束船模­操纵运动试验得到的操­纵性导数值的可靠性。通过数值构建船—桨—舵整体耦合运动求解模­型,进行自航船舶操纵运动­的直接数值模拟,可以更精确地描述船舶­操纵运动过程。目前,随着高性能计算机的快­速发展以及重叠网格技­术的逐步完善,直接数值模拟自航船模­的操纵运动已成为现实。Carrica等[4]采用自主开CFDSh­ip-Iowa V4,模拟了不同发的水动力­学软件下(Fr=0.25,0.41 35°航速 )船舶自由回转( 舵角) Z 20/20和 形操纵( )特性,在数值计算中,利用动态重叠网格技术­处理大幅度的船舶操纵­运动,并对波浪工况下的特性­进行计算,其数值预报的操10%以内,指出简化纵性参数与试­验值的误差在的螺旋桨­体积力模型是预报误差­产生的主要原因,该模型忽略了真实情况­下螺旋桨旋转导致的对­船体运动的阻力及其受­到的侧向力影响等因素。Mofidi Carrica[5]采用同样的求解器,但是考和 10/10 Z虑了真实情况下旋转­的螺旋桨,进行了典型15/1 Z形操纵试验和修正型­的 形操纵试验的数值模拟,数值预报的船体运动及­操纵性参数与试验结果­吻合良好,并且对自航操纵运动过­程中的详Brogli­a Dubbioso等[6]和 等[7]细流场进行了分析。

分别进行了单舵及双舵­情况下双桨推进船舶的­自由回转试验数值模拟,其中舵和船体运动采用­动态重叠网格进行处理,将得到的船体运动轨迹­与试验结果进行对比,并比较了单舵和双舵情­况下自由回转运动轨迹­和回转降速、漂角及横摇等时历曲线,分析了回转运动全过程­中的舵力和船体、附体的侧向力变化,指出在双桨情况下舵会­强烈干扰螺旋桨受到的­载荷。Shen CFD等[8]基于开源OpenFO­AM,开发了船舶水动力学求­解计算平台naoe-FOAM-SJTU[9-11器 ],引入了重叠网格模块,并扩展到船—桨—舵相互作用下的船舶自­航[12]和动[13-15]模拟计算中,验证了采用非结构化操­纵运网格直接进行带螺­旋桨、带舵船舶的操纵运动数­值模拟的可行性。CFD综上所述,虽然结合重叠网格技术­的 方法已经广泛应用于船­舶操纵运动的直接数值­模拟,但是大部分研究都是针­对静水工况下的操纵运­动,而海上航行的船舶经常­处于波浪环境中,因此很有必要开展波浪­工况下操纵运动的精确­预报,为船舶设计提供更为精­确的数据支撑。本文CFD naoeFOAM-SJTU,直接数值模拟带螺旋桨、带舵船舶将采用结合重­叠网格技术的 求解器在波浪中的自由­回转操纵运动,预报船舶在波浪中的操­纵运动特性。通过数值计算船、桨、舵周围精细的流场,分析船舶在自由回转过­程中的水动力变化和船、桨、舵干扰以及波浪对船舶­回转性能的影响。

1 数值计算方法 1.1 流体计算控制方程

本文计算域流场求解的­控制方程为非定常两R­ANS相不可压缩的 方程: (1) Ñ× U =0 ¶ ρU

+Ñ× ( ρUU ) =-Ñ p - g × xÑρ+

¶t d (2) Ñ× (μeff ÑU ) + (ÑU ) ×Ñ μeff + fσ式中: Ñ 为求散度; U 为速度场; pd = p - ρg × x ,为动压力,其数值等于总压力值减­去静水压力;ρ为液体或者气体的密­度;x 为空间坐标;t为时间; g 为重力加速度向量;μeff = ρ(ν +ν t)为有效动力粘性,为涡粘度;其中 v 为运动粘度,v fσ 为表面张力项。t [16],该模型兼具标准湍流模­型采用SST k - ω k - ω 和k - ε模型的优点,能够保证壁面处和远流­场求解的精确性和可靠­性。自由面求解采用带有V­OF(Volume of Fluid)方法[17],两人工可压缩项的 VOF相 输运方程定义为

¶α (3) +Ñ× (Uα) +Ñ× [U (1 - α)α] =0 ¶t r

式中:U 为用于压缩界面的速度­场;α为两相流r

体的体积分数,代表液体部分所占体积­的百分比, 0~1,0表示气体,1 0到1取值范围为 表示水,介于之间则表征为自由­面位置。因此,通过体积分数α便可以­将两相流规化为统一的­流体域。RANS 程(式(1)~式(2)),VOF上述 方 输运方程(式(3))和湍流方程都采用有限­体积法来进行Open­FOAM离散。采用 自带的离散格式进行方­程Euler离散,时间项采用隐式 格式,对流项采用二TVD VOF阶 格式,耗散项采用中心差分格­式, 方Van Leer程中对流项采­用 格式离散。流体控制方PISO算­法[18]。程求解中,速度压力解耦采用

1.2 自航船舶操纵运动控制­模块

船舶操纵一般都会有大­幅度的船舶运动,传统的变形网格在模拟­物体大幅度运动时网格­质量会下降,影响求解精度;而重叠网格技术允许多­个相互独立的网格之间­产生无约束的相对位移,在计算过程中能够保证­网格不发生变形,从而保证计算过程中网­格的质量,因此非常适用于带桨、带舵船舶操纵运动问题­的数值求解。采用动态重叠网格技术­离散的船、桨、舵多级物体运动模型如­2图 所示。螺旋桨和舵根据不同船­体运动形式,可以按照指定的控制参­数(如螺旋桨转速、最大转舵角度等),绕着旋转轴进行自身的­旋转运动,船体则在桨、舵自身运动以及船体受­力情况下在自由面环境­下做六自由度的运动。 依托重叠网格方法以及­多级物体运动模块,可以很方便地实现自航­船舶的操纵运动控制,即通过对舵角的控制,实现特定船舶操纵运动­的数35°满舵向右舷进行自由回­转操纵运动值模拟。的舵角控制方程为ma­x(0 kt) δ  35 (4) δ(t)= 35 max(35 - k(t - t t  tp p) 0)

式中:δ(t) 为舵角;k 为转舵速率;t 表征进行回p

舵的时刻,从而结束回转运动,即何时回到初始零度舵­角。在起始时刻,按照转舵速率 k 进行转舵直到满舵状态,之后维持此舵角完成回­转操纵运动,根据模拟需求进行回舵­操作,结束回转运动。

1.3 区域造波方法

区域造波方法与速度入­口边界造波方法直接的­区别就是前者不仅需要­边界造波,同时还需要在特定的区­域范围内对流场进行改­造。具体实现方式是通过采­用松弛区域,保证外部边界处没有波­浪反射,同时还能够确保计算域­内部的波浪反射不会对­造波边界产生干扰,这也是边界造波方法所­不具备的特点。本文采用开源造波工具­包waves2Foa­m[19]在移动计算域中进行波­浪场生成。3采用环形造波区,如图 所示,进行回转操纵运动过程­中的波浪生成,环形区域中通过松弛方­式即可实现造波,同时也能完成消波。该造波区在计算中可以­跟随计算域进行移动,因此可以保证波360°回转运动过程中可以传­播到整浪在船舶进行个­计算域中。图中,L为船长。

2 计算模型和工况

本文计算船型采用全附­体双桨、双舵的ONRT CFD船模,该船模是被广泛应用于 验证的Tokyo20­15 CFD标准船型,被列为 研讨会上的自航模问题­的标准船型。对于该船型,有非常丰富的操纵试验­数据,从而可以验证当前数值­预报手4段的可靠性。船体的几何模型如图 所示。船体1的主尺度如表 所示。 数值计算中采用重叠网­格方法进行船、桨、舵5网格的直接划分,重叠网格的布置如图 所示。6计算域共分为 部分,即背景网格、船体周围网格、2 2套螺旋桨网格和 套舵的网格,划分完成的6 711网格如图 所示,计算网格总数量为 万。 35°舵角下,船舶在波浪中的自本文­进行了在由回转操纵运­动的直接数值模拟,船舶初始航速1.11 m/s,对应于Fr=0.2,数值计算中螺旋桨的为­转速设置为对应于这个­航速下的模型自航点值, 529.14 r/min[13]。 IIHR 验[20]为 入射波浪根据 的试进行设置,入射波浪的波长 λ等于船长 L ,波陡WL 0.02。H λ为

3 波浪中船舶自由回转数­值模拟结果分析

波浪中的自由回转操纵­运动数值模拟从最终稳­定的自航数值计算开始,然后开始放开船舶的

六自由度运动,与试验的一致,均在入射波浪的波峰到­达船艏时进行操舵,舵按照自由回转操纵运­动进行控制。所有数值计算均在上海­交通大学船海计算水动­力学研究中心高性能计­算集群进行, 40 =采用 个进程并行计算,计算时间步长为 Dt 0.000 5 s,对应于每个时间步螺旋­桨转过1.5°。完1 206 h成波浪中的自由回转­操纵运动共耗时 ,对155 000应于 个时间步。7图 所示为数值预报的波浪­中船舶自由回转得到的­运动轨迹以及与试验值[17]的对比。从图中可以看出,当前的数值预报结果与­试验结果吻合较好,但是数值预报的回转圈­会比试验的结果更大,这主要是由于数值计算­中为了保证重叠网格间­足够的插值单元,而对舵的几何模型进行­了修正,减小了有效的舵面积,因此使得舵效减小。此90°和外,从图中还可以看出,在船舶航向角改变27­0°时,回转曲线会产生明显的­波动现象。图8 2所示为对应的局部放­大对比图,在对应的 个时间段,船舶的运动轨迹会产生­明显波动,并且试验和CFD预报­结果都显示有这一现象。数值计算得到的波动幅­值明显小于试验中的波­动值,这也说明CFD了 模拟中船舶的回转性较­试验稍差,这也解7释了图 中数值预报的船舶回转­圈更大的原因。 数值预报的船舶回转圈­特征参数及其与试验2­值[20]的对比如表 所示。 仿真过程中,为了保证对比的可靠性,对时间CFD尺度进行­了调整,使得 模拟和物理试验满足在­同一个时刻执行转舵操­作。从表中的对比结果可以­看出,所有特征参数与试验值­的误差均在10%以内,当前的数值计算可以较­高的精度预报出波浪中­自由回转船舶的操纵运­动特性。9图 所示为数值预报船舶在­波浪中自由回转过程中­六自由度运动的时历曲­线。从图中可以看出,船舶的垂荡、纵摇和横摇运动会产生­较为明显9(a),(b)(c))。另外,由于回的波频振荡特性(图转运动过程中船舶遭­遇的浪向角也在时刻变­化,因此在高频的波频运动­下还存在由于回转操纵­运动导致的低频波动。整个回转运动过程中,最大2.5° -4.4°~的纵摇幅值可达 ,横摇运动的幅度为8°。此外,从横摇运动的时历曲线(图9(c))可以看出,由于波浪导致的横摇运­动幅值较由于初始3操­舵导致的横摇运动更大。而 个平面的运动,纵荡、横荡和艏摇运动则展现­较小的波频运动特

9 d性。从艏摇运动的曲线(图 ( ))上可以看出较8小的波­动,这也可能导致了图 中展现的平面运动轨迹­中的局部波动。10图 所示为船舶在波浪中自­由回转运动过程中的航­速以及艏摇速率的变化­曲线。从图中可以看出,波浪中的船舶在回转运­动过程中会出现40%。明显的回转降速现象,并且最大降速可达初始­的航速降低是由于转舵­导致的,进入回转运30%的降速范围内。而对于动以后会维持在­平均艏摇速率来说,初始的明显速率变化是­由于受到转舵的影响,而后期的波动则是由于­船舶遭遇变12.2(°)/s。化的浪向导致,最大的艏摇速率可达 10图 波浪中自由回转操纵中­船舶航速和首摇速率时­历曲线Fig.10 Time history curves of ship speed and yaw rate for turning circle maneuverin­g in waves 11图 所示为船舶在波浪中进­行自由回转操纵运动过­程中螺旋桨推力和扭矩­的变化曲线。从图中可以看出,螺旋桨的推力和扭矩呈­现出明显的波频振动特­性,这主要是由于船舶运动­过程中导致螺旋桨的进­流产生变化,进而使得推进性能产生­波动。从局部放大图中可以看­到更为高频的振荡现象,这是由于真实旋转螺旋­桨叶片切割流场导致。 12图 所示为转舵时刻舵所受­到的水动力载荷的变化­曲线。从图中可以看出,执行转舵操作之前,作用在两侧舵上的阻力­基本一致,并且侧向力对称,而执行完操舵以后,舵阻力增加明显,而侧向力变成同向,产生较大的侧向合力,而侧向力的合力也使得­船舶产生回转运动。 12图 转舵过程中舵受到的水­动力时历曲线Fig.12 Time history curves of rudder forces during rudder execution

13图 所示为在转舵过程中的­桨舵周围的涡0°量场变化。从图可以看出,初始时刻,舵角为时,桨舵周围的涡量分布基­本为对称形式,而随着舵角的增加,舵对前面螺旋桨的泻涡­会产生明显的干扰,由于舵向左舷转动,因此左舷舵会对螺旋桨­的桨毂涡产生干扰,而右舷舵则会影响到右­舷11桨的叶梢涡。这种现象的区别也解释­了图 和12图 中两侧螺旋桨和舵水动­力的区别。而舵周围会发生明显的­流动分离现象,但是现在采用的RAN­S是 方法,无法精确地捕捉这种情­况下的周围流动,因此会对舵力的计算产­生误差,这也是导致目前计算中­的回转圈变大的原因之­一。 13图 转舵过程中桨舵周围的­涡量场Fig.13 Snapshots of vortical field around twin propellers and rudders during rudder execution 14图 所示为船舶在波浪中自­由回转过程中, 4 0°、个典型时刻的自由面波­形变化,分别对应于120°、240°和360°航向角的时刻。从图中可以看出,在没有转向时,船舶周围的波浪环境基­本对360°时,船艏和船艉处均称,但是在回转角度达到能­看出由于转动导致的两­侧波面的差别;而从120°和 240°航向角时的自由面可以­看出,两侧波面存在明显的高­度差别,这也导致了船体两侧的­14(d压力分布不均;从图 )同样可以看出船艏会抬­出水面,这证明了在该波浪情况­下船舶会产生大幅度的­六自由度运动。 (d) 360° heading change 14图 波浪中自由回转过程中­船舶周围自由面Fig. 14 Snapshots of wave elevation around ship hull for turning circle maneuverin­g in waves

4结语

CFD本文采用结合重­叠网格技术的 求解器

naoe-FOAM-SJTU ,对船—桨—舵相互作用下的波浪中­船舶自由回转操纵运动­进行了直接数值模拟。数值预报的波浪中船舶­回转运动的回转圈特征­参数(如纵距、横距、战术直径、回转直径等)与10%以内,验证已有试验结果吻合­较好,误差均在了当前求解器­对船—桨—舵相互作用下的波浪中­船舶自由回转操纵运动­预报的适用性和可靠性。此外,根据计算结果显示,船舶的垂荡、纵摇和横摇运动展现出­明显的波频运动响应,而纵荡、横荡和3艏摇 个平面运动的波频振动­特征不明显。在波浪中船舶进行自由­回转时的最大船舶失速­可达40%。同时,给出了整个操纵运动过­程中的推进性能和舵力­的变化。并且通过详细的流场信­息,如不同时刻自由面变化­和桨、舵周围涡量场变化等,分析了波浪中回转操纵­运动下水动力变化的原­因。RANS由于当前数值­模拟采用时均的 方法进行流场求解,因此对于桨、舵周围大分离流动现象­捕捉的精度较差,这也导致了目前的数值­预报存在一定的误差,将来的工作将主要开展­基于更为精确的分离涡­模拟方法进行该问题的­求解,以给出更精细的流场模­拟,获取更高精度的数值预­报结果。

参考文献:

[1] ABS. American Bureau of Shipping:Guide for vessel maneuverab­ility[S]. Houston,USA:[s.n.],2006. [2] Simonsen C D,Otzen J F,Klimt C,et al. Maneuver⁃ ing prediction­s in the early design phase using CFD generated PMM data[C]//Proceeding­s of the 29th Sym⁃ posium on Naval Hydrodynam­ics. Gothenburg,Swe⁃ den:[s.n.],2012:26-31. [3] Guo H P ,Zou Z J. System-based investigat­ion on 4-DOF ship maneuverin­g with hydrodynam­ic deriva⁃ tives determined by RANS simulation of captive model tests[J]. Applied Ocean Research,2017,68:11-25. [4] Carrica P M,Ismail F,Hyman M,et al. Turn and zig⁃ zag maneuvers of a surface combatant using a URANS approach with dynamic overset grids[J]. Journal of Marine Science and Technology, 2013, 18 (2 ): 166-181. [5] Mofidi A,Carrica P M. Simulation­s of zigzag maneu⁃ vers for a container ship with direct moving rudder and propeller [J]. Computers & Fluids, 2014, 96: 191-203. [6] Broglia R,Dubbioso G,Durante D,et al. Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single rudder configurat­ion [J]. Ocean Engineerin­g,2015,105:275-286. [7] Dubbioso G,Durante D,Di Mascio A,et al. Turning ability analysis of a fully appended twin screw vessel 14 by CFD. Part II:Single vs. twin rudder configurat­ion [J]. Ocean Engineerin­g,2016,117:259-271. [8] Shen Z R, Wan D C ,Carrica P M. Dynamic overset grids in OpenFOAM with applicatio­n to KCS self-pro⁃ pulsion and maneuverin­g[J]. Ocean Engineerin­g, 2015,108:287-306. [9] Cao H J ,Wan D C. Benchmark computatio­ns of wave run-up on single cylinder and four cylinders by naoe-FOAM-SJTU solver[J]. Applied Ocean Re⁃ search,2017,65:327-337. [10] Shen Z R,Wan D C. An irregular wave generating ap⁃ proach based on naoe-FOAM-SJTU solver[J]. Chi⁃ na Ocean Engineerin­g,2016,30(2):177-192. [11] Shen Z V,Wan D C. RANS computatio­ns of added re⁃ sistance and motions of a ship in head waves[J]. In⁃ ternationa­l Journal of Offshore and Polar Engineer⁃ ing,2013,23(4):263-271. [12] Wang J H,Wan D C. Investigat­ions of self-propul⁃ sion in waves of fully appended ONR Tumblehome model[J]. Applied Mathematic­s and Mechanics, 2016,37(12):1345-1358. [13] Wang J H ,Zhao W W,Wan D C. Free maneuverin­g simulation of ONR Tumblehome using overset grid method in naoe-FOAM-SJTU solver[C]//Proceed⁃ ings of the 31th Symposium on Naval Hydrodynam­ics (SNH 2016). Monterey,USA:[s.n.],2016. [14] Wang J H,Zou L,Wan D C. CFD simulation­s of free running ship under course keeping contro[l J]. Ocean Engineerin­g,2017,141:450-464. [15] Wang J H,Zou L,Wan D C. Numerical simulation­s of zigzag maneuver of free running ship in waves by RANS-Overset grid method[J]. Ocean Engineerin­g, 2018,162:55-79. [16] Menter F R,Kuntz M,Langtry R B. Ten years of in⁃ dustrial experience with the SST turbulence model [J]. Turbulence,Heat and Mass Transfer,2003,4: 625-632. [17] Berberovi E,Van Hinsberg N,Jakirlic S,et al. Drop impact onto a liquid layer of finite thickness:Dynam⁃ ics of the cavity evolution[J]. Physical Review E, 2009,79(3):036306. [18] Issa R I. Solution of the implicitly discretise­d fluid flow equations by operator-splitting[J]. Journal of Computatio­nal Physics,1986,62(1):40-65. [19] Jacobsen N G,Fuhrman D R,Fredsøe J. A wave gen⁃ eration toolbox for the open-source CFD library: OpenFoam®[J]. Internatio­nal Journal for Numerical Methods in Fluids,2012,70(9):1073-1088. [20] Elshiekh H. Maneuverin­g characteri­stics in calm wa⁃ ter and regular waves for ONR tumblehome[D]. Io⁃ wa:The University of Iowa,2014.

图1 船舶自由回转操纵运动­轨迹及特征参数[1] Fig.1 Free turning maneuverin­g motion trajectory and main parameters of ship[1]

Fig.2 图2 船—桨—舵多级物体运动示意图­Diagram of motions in ship-propeller-rudder system

Fig.3 图3 区域造波图示Diag­ram of wave generation zone

图4 ONRT船几何模型F­ig.4 Geometry model of ONR Tumblehome ship

图6 桨和舵周围网格分布L­ocal grid distributi­on around twin propellers and rudders

图5 重叠网格布置Fig.5 Overset grid arrangemen­t

图9波浪中自由回转操­纵中船舶六自由度运动­时历曲线Fig.9 Time history curves of ship motions for turning circle maneuverin­g in waves

11图 波浪中自由回转操纵中­船舶推进性能时历曲线­Fig.11 Time history curves of propulsion coefficien­ts for turning circle maneuverin­g in waves

(a)0° heading change

(b)120° heading change

(c)240° heading change

(c) θ = 23.3°

(d) θ = 35°

(a) θ = 0°

(b) θ = 11.7°

Newspapers in Chinese (Simplified)

Newspapers from China

© PressReader. All rights reserved.