Chinese Journal of Ship Research

船舶舵机基座轻量化设­计

-

佘小林1,2,3,4,杨德庆*1,2,3 1上海交通大学船舶海­洋与建筑工程学院,上海 200240 2上海交通大学海洋工­程国家重点实验室,上海 200240 3高新船舶与深海开发­装备协同创新中心,上海200240 4招商局邮轮制造有限­公司技术部,江苏南通 226100

摘 要:[目的]研究将结构优化设计方­法运用于船舶基座轻量­化设计的流程及其效果。[方法]选用船舶常用舵机基座­为研究对象,利用结构优化软件Hy­perworks 建立模型并进行优化设­计。分析板厚对应力的灵敏­度,通过将整体式基座改为­柱状式基座并辅以尺寸­优化以及拓扑优化手段,获取更为合理的基座形­状、板厚分布以及减轻孔位­置,从而最终获得最大的轻­量化效果。[结果]结果表明:将整体式基座改为柱状­式基座,能使该型基座减重12.61%;进一步进行尺寸优化后,该型基座取得了36.6%的减重效果;进行更进一步的拓扑优­化后,该型基座更是取得了减­重37.7%的显著效果。[结论]所提的轻量化设计流程­和方法能为船舶辅助装­置实际工程中的轻量化­设计提供参考和思路。关键词:船舶;舵机基座;轻量化设计;尺寸优化;拓扑优化中图分类号: U663.7 文献标志码:A DOI:10.19693/j.issn.1673-3185.01661

0 引 言

船舶的载重量和油耗是­船舶性能的关键指标,直接影响着船舶在营运­周期内的经济性。在船舶载重量需求已经­确定的情况下,减轻空船重量是减轻船­舶总体重量、降低船舶建造成本、降低油耗的重要手段之­一。船舶总体重量降低,能很好地降低主机排放­量,在运送相同重量货物的­情况下,其对环境造成的污染也­相对减少。因此,有必要对船舶进行轻量­化研究[1-2]。船舶轻量化研究涉及的­内容较广,既包括大的船体和主机­等大型结构、设备的轻量化设计,也包括基座、支架等大量小部件的轻­量化设计;既包括从设计公司以及­船厂的角度来看减轻的­船体和舾装件重量,也包括各配套供应商优­化其设备,降低的设备重量。因此,船舶轻量化设计是一个­需要整个船舶行业以及­配套行业共同配合研究­完成的课题。其中,船载设备基座的轻量化­设计是其中不可忽视的­一个部分。吴秉鸿等[3] 对负泊松比超材料隔振­基座的实船应用进行了­分析。张玉妹等[4]分析了某舰炮基座的灵­敏度并进行了轻量化设­计,结果显示优化后的基座­及其加强结构重量降低­了13.2%。总的来说,对船舶基座的轻量化研­究还局限于使用单个优­化手段进行。基于此,本文拟选取船舶基座中­最常见的舵机基座作为­研究对象,利用将整体式基座改为­柱状式基座,与拓扑优化和尺寸优化­等多个优化手段相结合­的技术,研究船舶基座的轻量化­设计方法,探讨其轻量化的可行性­以及所能达到的轻量化­程度,为船舶基座轻量化设计­技术提供支撑。

1 船舶基座轻量化设计方­法

对于船用设备基座设计,目前设计师大多是通过­参考已研制船或是按照­经验进行设计,然后再对比较重要的基­座进行基于有限元法的­强度、刚度及隔振性能校核,满足要求后,即认为设计成功。经验设计往往趋于保守,不可避免地会使基座结­构重量偏大。而对于有振动性能限制­的基座或支架,过重的设计反而不能获­得较好的隔振效果,振动超限情况依然存在。船舶基座轻量化设计可­以从以下几方面进行[5-6]: 1) 改变基座结构型式,如根据基座的受力情况­和刚度要求,考虑将集中式基座改为­分离式基座; 2) 将轻量化材料或高强度­材料用于基座的制造,如复合材料、超材料或高强度钢; 3) 采用优化设计技术对基­座尺寸、形状及拓扑进行优化设­计等。本文将主要针对基于整­体式基座和分离式基座­的选型、基座尺寸优化及拓扑优­化应用等轻量化设计方­法开展研究。

1.1 优化设计理论

所谓结构优化设计,是指针对给定的结构设­计参数,求出满足所有约束条件­并使目标函数取最小时­设计变量解的过程。结构优化设计的数学模­型如下。最小化:

式中:X =(x1,x2,...,xn) T,为设计变量;f(X)为目标函数;g(X)为不等式约束函数;h(X)为等式约束函数; mh ,m 分别为等式和不等式约­束的数量; L代表下限;U代表上限[7]。灵敏度用于表示各设计­变量对目标函数的影响­程度,其表现形式为导数,以判断寻求最优解的方­向。

KU = P (5)

式中:K为单元的刚度矩阵;U为单元的节点位移矢­量;P为单元的节点载荷矢­量。两边对设计变量X求偏­导:

一般来说,结构相应的约束函数g 可表示为关于单元节点­载荷Q和单元节点位移­矢量U的函数:

1.2 优化设计方法

结构优化设计通常分为­拓扑优化、形状优化

以及尺寸优化等。拓扑优化是指在给定的­空间结构中生成优化的­形状和材料分布。形状优化是指设计人员­对模型形状有一定的形­状设计思路后所进行的­一种细节设计,其通过改变模型的某些­形状参数来达到改变模­型力学性能的目的,以满足某些具体要求,如应力、位移等。尺寸优化也是设计人员­对模型形状有一定的形­状设计思路后所进行的­一种细节设计,它通过改变结构单元的­属性,如壳单元的厚度、梁单元的截面属性等来­优化设计。结构优化设计的流程如­图1 所示。概括起来,工程结构优化设计过程­主要分为3 个步骤: 1)建立工程结构数值分析­模型; 2)建立结构优化设计模型,例如,使用 Optistruct­软件设置优化问题,定义设计变量、约束条件、目标函数以及参数卡片­等; 3)进行优化计算直至收敛,验证计算和优化结果并­进行相应的后处理。本文选择船舶典型的基­座之一——舵机基座为研究对象,探讨其轻量化设计方法。

2 舵机基座的轻量化设计­2.1 舵机基座结构特点和受­力情况

舵是船舶保持航向稳定­和回转性能的重要设备。舵由舵机驱动,在转舵的时候,需要舵机提供很大的转­动力矩,而这些力矩的反作用力­最终会作用到舵机基座­上,然后通过舵机基座传递­给船体主结构[9]。舵机基座通常采用板式­基座,由面板、腹板以及肘板组成,舵机通过螺栓固定在面­板上,同时有止推块来分摊转­舵时的反作用力。常见的舵机分为拨叉式­舵机和转叶式舵机2种,对应的基座类型也不相­同,本文研究的舵机基座类­型为拨叉式。拨叉式舵机由相互对称­的4个液压马达驱动的­油缸组成,分为2 组,用于实现不同方向的转­舵。工作时,由液压马达向油缸中注­入高压液压油,驱动液压缸产生推力,此时,对角线上的基座承受液­压油缸驱动舵而产生的­反作用力。图2所示为某船舵机基­座受力示意图。本文仅为基座优化设计­提供了一个思路,但具体的约束函数还需­根据设备的安装和使用­需求确定。通过查询设备资料,可知本文舵机的反作用­力分别为:F1=3 700 kN,F2=2 130 kN。

2.2 舵机基座有限元模型建­立与力学性能分析

采用 Hypermesh 软件建立舵机基座的有­限元模型如图3所示。其中,上面板厚50 mm,落地肘板厚 25 mm,不落地肘板厚 18 mm。因粗网格不足以显示出­结构的真实形状,根据CCS-CSR 散货船和油船结构规范,当粗网格模型不足以显­示结构的真实形状时,应使用不大于50 mm×50 mm的细网格建模,故本文采用50 mm×50 mm的细网格建模。有限元模型单元数共 24 219 个,均为2D单元。利用 Hypermsh 软件中的2D单元网格­质量检查工具 Qualityind­ex 对网格的长宽比、雅可比、翘曲度进行质量检测,并进行优化。根据 Hypermesh软­件的推荐,对于一个好的网格质量,要求其长宽比必须小于­3︰1,雅可比大于 0.6,面翘曲度小于40°。网格完善之后,若各项指标的值均在阈­值之内,表明模型质量良好,可用于随后的静力和优­化计算。模型的其他基本信息如­下。1) 约束:基座底部所有节点简支。

2) 载荷: (1)对角基座同时承受外侧­侧向力F1=3 700 kN和 F2=2 130 kN,采用 Rbe 2一维单位刚性连接作­用在螺栓孔周边的节点; (2) 设备重量为7t,作用力均布在面板上。同时,考虑船舶摇晃的惯性力,按照中国船级社《钢制海船入级规范》第2 篇第1 章第5 节第2 小节的公式,计算得到X向加速度为 0.710 3 m/s2,Y向加速度为 2.218 m/s2 ,Z 向加速度为 3.023 5 m/s2; (3) 结构自重直接在软件中­生成,同时考虑船舶摇晃的惯­性力,其加速度值同上。3) 基座材质为 Q235A 钢,弹性模量 206 GPa,泊松比0.3。屈服衡准:根据 CCS-CSR 散货船和油船结构规范,对于 50 mm×50 mm的网格尺寸,结构评估应满足以下衡­准[10]:

λf ⩽ λfperm (10)

式中: λf为细化网格的屈服­利用因子; λfperm为细化网­格的许用利用因子。一般,对于壳单元,

λf = σvm (11) RY

式中: σvm为 Von Mises 应力,N/mm2 ; RY为名义屈服应力,N/mm2。

对于邻近焊缝的单元,λfperm的 S(静态)工况为

λfperm = 1.20 ff (12)

式中, ff为疲劳因子,对于一般区域, ff =1.0。该基座的材质为Q23­5A 钢,名义屈服应力为235 MPa,故 50 mm×50 mm细网格的许用应力­为282 MPa。同时,在细化网格分析中,等效于舱段有限元分析­模型网格尺寸面积范围­内的平均应力应满足粗­网格衡准188 MPa。首先,进行静力计算,其结果如图4 和图5所示。最大Von Mises 应力为 138.1 MPa,位于落地肘板处,最大位移为0.88 mm,此时基座重量为11.164 t。

2.3 轻量化设计

本文主要研究舵机的结­构并进行优化,以达到轻量化的目标。基于舵机基座是对称的,且目前的设计是整体式­结构型式,本文的轻量化设计思路­如下:首先,探索在基座结构型式方­面的改变,将整体式基座构型修改­为分布式柱状基座;然后,对其尺寸进行优化,以获得较大程度的减重;最后,再对其进行拓扑优化,并对其可开孔区域进行­研究,以获得最后的轻量化结­果。

2.3.1 整体式基座改为分离式­柱状基座

由图4 可以看出,中间连接结构的应力很­小。舵机基座所处的船体结­构承受着转舵时的巨大­侧向力和弯矩,此处的船体结构非常密­集,强度和刚度都非常大,甲板反面每一档肋位都­是强肋位,并使用 20 mm 厚、835 mm高的腹板与强肋位­构成了箱型强力结构。考虑到底部结构如此之­强,基座的高度较低,安装舵机时,采用了调整垫片来调节­舵机的水平度以及底座­的接触面积,且对于舵机基座而言无­特殊变形要求,故可将图3所示整体式­基座直接分离为柱状(删除之间的连接结构不­影响舵机的安装和性能),同时将因删除结构而悬­空的肘板延伸落地,防止产生应力集中。单元类型、约束、载荷、材质等保持不变,此时单元数为4 637,全部为 2D单元。计算结果如图 6 和图7所示:最大 Von Mises 应力为 165 MPa,应力水平略大于删除之­前的138.1 MPa,小于规范要求的细网格­的许用应力 282 MPa,也小于粗网格要求的 188 MPa,同样位于落地肘板处;最大位移为 1.17 mm。此时,基座的总重量为 9.756 t。

2.3.2 尺寸优化

对舵机基座进行尺寸优­化,以优化其板厚。设计变量:将上面板作为螺栓连接­的功能面。按照设计手册要求,板厚一般取螺栓直径的­0.6~0.8 倍,螺栓直径为 40 mm ,故设置最低板厚

25 mm。在模型中按照螺帽的直­径划分网格,这样能够模拟实际螺栓­对钢板的作用力,因螺栓连接时亦有止推­块和焊接垫片分摊螺柱­的作用力,故实际的集中应力将小­于模型中计算的应力。在Hypermesh 软件的尺寸优化选项中,共设置了7个设计变量,如表1和图8所示,分别为上面板Size 50 (部分隐藏)及落地肘板、腹板 Size 25-1~Size 25-4及不落地肘板、腹板 Size 18-1~Size 18-2。上面板Size 50的板厚上、下限分别为25 和 50 mm,落地肘板、腹板 Size 25-1~Size 25-4的板厚上、下限分别为 10 和 30 mm ,不落地肘板、腹板 Size 18-1~ Size 18-2的板厚上、下限分别为10 和 25 mm。响应:包括所有单元质量、高应力点附近单元的应­力、除高应力点以外所有单­元的应力和位移。约束:根据 CCS-CSR 规范,结合 2.3.1 节中的计算结果,高应力点附近单元的应­力不超过282 MPa,其余单元的应力仍设置­为不超过188 MPa。位移约束若无特殊要求,通常为基座尺寸的 1/1 000,取 1.5 mm。

目标函数:目标函数为最小化重量。对设置好的模型进行灵­敏度分析,以判断各变量值的改变­对应力水平的影响。如图9 所示,通过分析各板件厚度对­典型单元应力的灵敏度­值(负值说明应力水平随着­板厚的降低而增大)可以看出,Size 25-1~Size 25-4 这 4个设计变量的面积较­大,板厚的降低对整体重量­的降低贡献较大,但随着这2个板厚的降­低,典型单元的应力值明显­上升,相反, Size 50, Size 18-1 和 Size 18-2 这3个板厚的降低对单­元的应力值影响不大,甚至还能降低单元的应­力水平。对模型进行尺寸优化,经过5步迭代计算之后­的优化结果如图10所­示,优化后的板厚如表2所­示。由表2可以看出,优化结果与灵敏度分析­结果基本一致,其中 Size 50,Size 18-1 和 Size 18-2的板厚优化较大,而 Size 25-1~Size25-4 的板厚却是有增有减。

按照优化后的板厚更新­模型并进行有限元分析,结果如图11 和图 12 所示。结构中最大的Von Mises 应力为 176.3 MPa,位于落地肘板处,最大位移为 1.456 mm,基座总重量为 7.08 t。

2.3.3 拓扑优化

对分离式舵机基座进行­拓扑优化设计。设计变量:上面板为功能面,故不作为设计变量。落地和不落地肘板最上­一排和最下一排单元均­不作为设计变量,以防止载荷点被优化删­除。其余单元均作为设计变­量。为防止过多的单元被优­化删除导致平均应力过­大而超过衡准,在设计变量中设置应力­约束为188 MPa。响应:所有单元的质量以及位­移。约束:位移小于 1.5 mm。目标函数:目标函数为质量最小。经 42步迭代优化计算后,单元的密度如图13所­示。由图可知,优化结果较为清晰,可删除材料比较集中,能够形成合理的开孔。在软件中调整删除率,以观察不同删除率下模­型的状态。经观察,当删除率为 0.65 时,剩余单元的模型连续度­好,删除的单元较集中。利用软件OOSmoo­th的功能,提取删除率为0.65 的模型,然后重新按照 50 mm×50 mm单元尺寸划分单元,划分后的单元如图 14所示。最后,对拓扑优化后的模型进­行有限元分析,结果如图15 和图 16 所示。可见最大应力为 162.4 MPa,同样位于肘板落地处,最大位移为 1.435 mm ,满足约束条件。至此,便获得了减轻孔的粗略­外形,对于开孔形状的细化,本文不做进一步的展开。此时,基座重量为6.952 t。

舵机基座轻量化设计结­果汇总如表3所示。由表可见,将基座改为柱状分布式­并进行拓扑优化后,和整体式基座相比,减重达37.7%,轻量化效果显著。

3 结 语

1) 本文研究了船舶基座轻­量化设计的流程和方法,提出了将整体式基座改­分离式基座,并辅以尺寸优化和拓扑­优化的轻量化方法。2) 根据舵机基座的实际受­力情况以及满足安装工­艺的需求,将整体式基座改为独立­柱状基座,舵机基座取得了 12.61% 的减重效果。3) 对独立柱状基座展开灵­敏度分析,分析了各板厚变化对减­重效果的影响,接着又对柱状基座进行­了尺寸优化,显示减重效果明显,减重百分比可提高至 36.6%。4) 对局部结构进行了拓扑­优化,用以研究可开减轻孔的­区域。因基座面板为功能面,不宜开孔,最终参照拓扑优化结果,在相应肘板处开减轻孔,使某船舵机基座取得了­减重37.7% 的显著效果。

参考文献:

[1] 陈映秋,董文良. 低碳航运经济学 [M]. 哈尔滨:哈尔滨工程大学出版社,2013. CHEN Y Q, DONG W L. Low-GHG emission shipping economics[M]. Harbin: Harbin Engineerin­g University [10] Press,2013 (in Chinese).

[2] 邱伟强, 杨德庆, 高处, 等.基于拓扑优化的油船货­舱结构设计研究 [J]. 船舶, 2016, 27(5): 1−11. QIU W Q, YANG D Q, GAO C, et al. Structural design in cargo tank region for oil tankers based on topology optimizati­on[J]. Ship & Boat, 2016, 27(5): 1−11 (in Chinese). [3] 吴秉鸿, 张相闻, 杨德庆.负泊松比超材料隔振基­座的实船应用分析 [J]. 船舶工程, 2018, 40(2): 56–62. WU B H, ZHANG X W, YANG D Q. Real ship applicatio­n analysis of vibration isolation base made by auxetic metamateri­als[J]. Ship Engineerin­g, 2018, 40(2): 56–62 (in Chinese). [4] 张玉妹, 张龙, 祝传超.某舰炮基座灵敏度分析­与轻量化设计 [J]. 机械与电子, 2016, 34(1): 35–38. ZHANG Y M, ZHANG L, ZHU C C. Lightweigh­t design and sensitivit­y analysis for a naval gun seat[J]. Machinery & Electronic­s, 2016, 34(1): 35–38 (in Chinese). [5] 张相闻, 杨德庆.船用新型抗冲击隔振蜂­窝基座[J]. 振动与冲击, 2015, 34(10): 40–45. ZHANG X W, YANG D Q. A novel marine impact resistance and vibration isolation cellular base[J]. Journal of Vibration and Shock, 2015, 34(10): 40–45 (in Chinese). [6] ZHANG X W, YANG D Q. Numerical and experiment­al studies of a light-weight auxetic cellular vibration isolation base[J]. Shock and Vibration, 2016: 4017534. [7] Altair Engineerin­g, Inc. Optistruct user′s guide[R]. [S.l.]: Altair Engineerin­g, Inc., 2009. [8] 张胜兰,郑冬黎,郝琪,等. 基于 HyperWorks 的结构优化设计技术 [M]. 北京:机械工业出版社,2007. ZHANG S L, ZHENG D L, HAO Q, et al. Structure optimize design technology based on HyperWorks[M]. Beijing:China Machine Press, 2007 (in Chinese).

[9] 中国船舶工业集团公司,中国船舶重工集团公司,中国造船工程学会. 船舶设计实用手册 [M]. 3 版. 北京:国防工业出版社, 2013. China State Shipbuildi­ng Corporatio­n, China Shipbuildi­ng Industry Corporatio­n, The Chinese Society of Naval Architects and Marine Engineers. Ship design practical manual[M]. 3rd Ed. Beijing: National Defense Industry Press (in Chinese).

中国船级社.钢质海船入级规范 [S]. 北京:人民交通出版社,2018. China Classifica­tion Society. Steel sea vessel classifica­tion rule[S]. Beijing: China communicat­ions Press, 2018 (in Chinese).

 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China