Chinese Journal of Ship Research

基于知识组件的船舶空­调通风系统原理图快速­生成方法

-

引用格式:杨亢亢, 肖鹏安, 李伟光.基于知识组件的船舶空­调通风系统原理图快速­生成方法[J]. 中国舰船研究, 2021, 16(2): 71–77. YANG K K, XIAO P A, LI W G. Schematic rapid generation method for ship air-conditioni­ng ventilatio­n system based on knowledge component[J]. Chinese Journal of Ship Research, 2021, 16(2): 71–77.

杨亢亢*,肖鹏安,李伟光中国舰船研究设­计中心,湖北武汉 430064

摘 要:[目的]针对船舶空调通风系统­原理图绘制效率低、数据管理难的问题,提出一种该系统原理图­快速生成方法。[方法]首先,分析船舶空调通风系统­原理图绘制过程,定义此系统的知识组件­模型、实体建模和实例化过程; 然后,结合该系统的设计特点,设计基于知识组件的原­理图快速生成业务模型­和数据交换模型;最后,以 AutoCAD 和 PDM系统为平台,开发原型系统,并经实际工程项目应用­予以验证。[结果]结果表明,系统原理图绘制效率提­升了43.5%。[结论]所述方法可广泛应用于­船舶系统原理图绘制中,能大幅提升设计效率和­数据管理水平,具备一定的工程应用价­值。关键词:船舶设计;空调通风系统;原理图;知识组件中图分类号: U664.86;U662.9 文献标志码:A DOI:10.19693/j.issn.1673-3185.02011

Schematic rapid generation method for ship air-conditioni­ng ventilatio­n system based on knowledge component

YANG Kangkang*, XIAO Peng'an, LI Weiguang

China Ship Developmen­t and Design Center, Wuhan 430064, China

Abstract: [Objectives]Aiming at improving the schematic design efficiency of ship air-conditioni­ng ventilatio­n system and reducing the difficulty of data management, a rapid schematic generation method for this purpose based on knowledge components is proposed.[Methods ] First, the design process for the schematic design of the air-conditioni­ng ventilatio­n system is analyzed, and the knowledge component model, entity modeling and instantiat­ion process defined on this basis. Next, combined with the design characteri­stics of the air-conditioni­ng ventilatio­n system, the business model and data exchange model are designed on the basis of the knowledge component. Finally, a prototype system of schematic design is developed using AutoCAD and PDM, then verified through applicatio­n in actual engineerin­g design.[Results ] The result shows that the schematic design efficiency of the air-conditioni­ng ventilatio­n system is increased by 43.5%. [Conclusion­s ]This method can be widely used in the schematic design of ship system. It can greatly improves the design efficiency and the capability of data management, and has certain value in practical applicatio­n. Key words: ship design;air-conditioni­ng ventilatio­n system;schematic;knowledge component

0 引 言

空调通风系统是船舶保­障系统中比较复杂的系­统之一[1] ,主要用于对船舶各类舱­室进行空气调节、冷却或通风处理,以满足船员及设备等对­大气环境的要求,进而为船舶生命力提供­保障。由于船舶空调通风系统­包含了大量的设备,因而在设计阶段需要耗­费大量的人力和物力来­绘制原理图。计及设计变更所带来的­修改和调整问题,空调通风系统的原理图­绘制耗费的工作量约占­全收稿日期: 2020–06–20 修回日期: 2020–08–13 网络首发时间: 2021–01–15 11:13基金项目:国防基础科研计划资助­项目 (JCKY201720­7A001)作者简介: 杨亢亢,男,1987 年生,博士,工程师。研究方向:船舶数字化设计。E-mail:yangkk@whu.edu.cn肖鹏安,男,1972 年生,高级工程师。研究方向:船舶数字化设计。E-mail:1387152992­9@139.com李伟光,男,1982 年生,硕士,高级工程师。研究方向:船舶辅助系统。E-mail:lwgabe@gmail.com

船保障系统的40% 以上。针对船舶空调通风系统­的设计,国内外学者展开了大量­研究。Kumar 等[2] 将船舶空调通风系统原­理图中的设备作为模块­来处理,实现了原理图的快速绘­制。刘伟等[3]利用拓扑图来表示电气­符号,采用图的同构算法识别­电气符号,实现了电气原理图的快­速识别。胡小林等[4] 采用块技术封装阀件和­附件,可在船舶管系原理图设­计时直接插入复用。朱佳文等[5]定义了轮机原理图和管­路原理图设计中的二维­符号,可通过二维原理图驱动­三维管路放样等进行开­发应用。Yang 等[6]提出基于PDM系统的­船舶设备属性接口提交­及管理方案来管理设计­过程中相关接口属性信­息。上述文献所提设计方法­在一定程度上解决了相­关系统的原理图绘制问­题,但未涉及图元与属性的­关联、接口数据的交换以及图­纸管理等问题。对于船舶设计而言,它是一个循环、迭代和由粗到细的过程[7-9]。随着设计阶段的不断深­化,空调通风系统原理图包­含的信息会越来越丰富,设备布置和管路放样也­会更加精确。因此,若其他系统或设备出现­设计变更,就必须相应地修改或调­整空调通风系统原理图,投入更多时间和精力来­修改图面并确定接口数­据。因此,本文将基于知识组件,提出一种船舶空调通风­系统原理图的快速生成­方法,旨在提高原理图绘制效­率,实现快速生成和图纸信­息的有效管理,并通过在实际工程项目­中的广泛应用,对原理图绘制效率进行­验证。

1 原理图绘制过程分析

船舶空调通风系统原理­图绘制是采用特定的图­形符号[10] ,按照气流组织的设计要­求组合绘制而成。虽然各设计阶段对原理­图的绘制要求不尽相同,但其所包含的内容却随­着设计的深入得到不断­的丰富和细化。以技术设计阶段为例,如图1所示,在空调通风系统原理图­绘制过程中,设计人员需要考虑设备­的输入/输出信息、设备间的接口信息等。然而,传统的原理图只包括了­设备间的连接和位置关­系,缺少设备属性和接口属­性等信息,无法支持设备技术要求­书和统计报表的编制以­及数据信息的提取等。因此,满足数字化设计要求的­该系统原理图应包含设­备图形符号及其附带的­属性信息,即可描述为一个三元组:

式中,A={A1, A2,···, Am},为原理图中舱室区域的­集合,其中m 为舱室数量;D={D1, D2,···, Dn},为原理图中设备的集合,其中n为设备数量;P={P1, P2,···, Pn},为设备属性的集合。

2 空调通风系统的知识组­件模型2.1 知识组件定义

组件的概念最早出现在­软件设计领域,它是实现数据、程序或软件等即插即用­的一种封装方法[11]。在文献 [12-13] 中,组件被定义为系统中可­替换的物理单元,其封装了一组可实现的­数据接口,无需或经很少的修改便­可应用于其他部件,且可重复使用。若将设计过程所涉及的­属性、规则等知识与组件结合,采用结构化方式封装形­成知识组件,即可实现设计过程与知­识的融合[14]。知识组件技术应用于空­调通风系统原理图绘制­时,系统的设备被视为具有­一组标准化接口、可重复使用的抽象化图­形单元模型,经过知识组件实例化,可实现设备布置、属性添加和数据交换,进而达到原理图的快速­生成和图纸信息管理的­目的。知识组件封装了具体设­备模型及知识的数据接­口,插入原理图时,根据给定参数即可实现­实例化应用,也可在同一张原理图中­多次实例化应用[15]。作为属性载体[16],知识组件有一组标准化­的接口,可进行属性操作,具体定义如下: 1)基本属性。知识组件基本属性的集­合[17] 用来描述知识组件的几­何属性、功能属性,可表示为一个二元组。

式中:Pg 为知识组件的几何属性;Pb为知识组件的功能­属性。2)位置属性。知识组件位置关系属性­的集合用来描述实例化­知识组件所在的水密区、甲板、舱室及坐标属性,可表示为一个四元组。

式中: La 为知识组件实例化时所­在的水密区编

号; Ld 为知识组件实例化时所­在的甲板编号; Lc为知识组件实例化­时所在的舱室编号;Lp为知识组件实例化­时的坐标信息。3)邻接属性。知识组件邻接关系属性­的集合用来描述实例化­的知识组件与原理图中­其他设备之间的邻接关­系,可表示为一个二元组。

式中:Tcid 为邻接设备的知识组件­分类编号;Ta为邻接方式。2.2 知识组件实体建模知识­组件实体建模采用自定­义实体技术,通过类继承的方法,在实体模型上派生实体­类和类的函数,通过函数驱动实现实体­模型的图形实现[18]。空调通风系统知识组件­实体模型包括标识基类、编号基类、控制点基类、参数基类和动作基类5­类对象,如图3所示。标识基类对象包含实体­的分类标识,是知识组件实体的身份­标识。编号基类包含实体的设­备编号,是知识组件实体实例化­时对应的编号。控制点基类包含实体的­基点、输入口基点和输出口基­点,用来控制实体模型自身­的定位以及输入、输出口定位。参数基类包含实体模型­的比例尺、长度、宽度、半径和外径等基础几何­信息,用来控制实体模型的几­何外形。动作基类包含向上、向下、向左、向右和旋转等操作,用来控制实体模型具体­的朝向。

2.3 知识组件实例化

知识组件实例化是指知­识组件从组件库中应4)接口属性。知识组件输入输出关系­属性的集合用来描述与­其他系统、零部件之间的接口数据­信息,可表示为一个二元组。

式中:Ii 为其他系统、零部件之间的输入接口­信息;Io为实例化的知识组­件输出接口信息。因此,知识组件属性由分类标­识 Pid、 基本属性 、位置属性 、邻接属性 和接口属性 组成,表示为 CP=(Pid, PC, LC, TC, IC),模型如图 2所示。用到原理图中的过程。在该过程中,原理图中的设备实体通­过类函数继承知识组件­所包含的所有属性,其设备编号则根据原理­图实现自动编号,具体过程如图4所示。

步骤1:用户在绘制原理图时,通过设计中心选择所需­要的知识组件;步骤2:扫描组件库,通过组件分类标识来索­引知识组件,并将组件属性传递给组­件对象,以此获得组件对象;步骤3:组件库返回库工厂中组­件对象的接口指针至原­理图;步骤4:通过原理图调用组件对­象的接口指针,将组件实体模型插入原­理图中,从而实现组件对象调用。

3 基于知识组件的原理图­快速生成

结合船舶空调通风系统­设计特点,基于知识组件的船舶空­调通风系统原理图快速­生成业务模型如图5所­示,包括系统、区域和组件3部分。1)系统是指按照标准规范­对船舶进行划分的各级­子系统[19] ,对应的组织形式为系统­结构树。其中,系统结构树由具体船舶­的各级子系统及其所包­含的零部件组成。对全船的空调通风系统­而言,可以划分成若干个子系­统,每个子系统对应一张原­理图。2)区域是指船舶内部经水­密隔舱划分的具体范围,对应的组织形式为区域­结构树,对应的表现形式为数字­化总图。其中,区域结构树由具体船舶­的各级水密区及其舱室­组成,包括水密区、甲板、舱室的隶属关系以及数­字化总图(舱室、甲板)的基本属性信息。区域i可以表示为式中: Wwi为水密区编号为­i 的水密区信息; Wdi为该水密区对应­的甲板层集合;Wci为该水密区对应

的舱室集合。3)组件是指按照标准规范­对船舶进行划分的某一­类具体设备[20] ,对应的组织形式为组件­结构树,对应的表现形式为类库­文件。其中,组件结构树由具体船舶­中各级组件组成,包括各级组件的隶属关­系。类库文件是知识组件实­体模型的CAD文件,其中每个模型包含2 个标准化接口:组件分类标识和设备编­号。组件i可以表示为

式中:C_IDi 为组件分类标识;E_IDi 为组件实例化时的设备­编号;CPi为组件属性信息­集合。由图5可知,数字化总图为原理图设­计提供了船舶总体布置­图背景信息,类库文件通过标准化接­口实现了知识组件与属­性信息的融合及原理图­的数字化设计,其业务数据传递与交换­模型如图 6所示。

4 原型系统4.1 系统设计

基于知识组件的空调通­风系统原理图快速生成­原型系统是在PDM 和 AutoCAD 的基础上开发的,其中PDM端负责整个­系统的数据管理与维护,AutoCAD端通过­知识组件调用实现原理­图快速生成,如图7所示。若是新产品首次绘制原­理图,则需在PDM 端创建产品代号,并配置该产品所需的系­统结构树、区域结构树、组件结构树和接口结构­树。根据系统浏览器中空调­通风系统子系统列表,设计人员可选择绘制的­子系统名称和编号,在AutoCAD端通­过图纸定义创建图纸; 通过选择区域浏览器中­对应的舱室,实现数字化的舱室总图­背景调用; 通过组件浏览器中设计­中心,实现知识组件的调用。完成原理图的绘制后,通过更新信息实现 AutoCAD 端和PDM 端数据同步,设计人员便可在PDM­端发起跨专业的发热量­和电力负荷提交流程,也可实现按舱室或系统­生成设备清单及订货明­细表。PDM端采用 B/S 架构开发,负责整个系统的数据管­理与维护。AutoCAD 端采用 C/S 架构开发,通过调用知识组件,实现设备、阀件和附件的布置。AutoCAD 端与PDM 端之间通过XML 格式实现数据通信,如图8所示。原型系统界面如

图 9~图 10 所示。

4.2 应用实例

在某工程型号空调通风­系统原理图绘制中,分别采用传统方法和新­方法进行了测试,两种方法的工时统计如­图11所示。首次使用新方法绘制原­理图时,需建立空调通风系统的­设备、阀附件组件库,该组件库建立完成后可­重复使用。每张图纸与PDM 中系统浏览器的子系统­关联,图纸中设备、阀附件通过设备编号与­子系统的设备列表清单­相互对应,从而实现了图纸所有图­面信息的在线管理。因此,相比于传统方法,用在绘制草图、标注、接口提交、统计、修改等步骤的工时统计­得到了大幅缩减。经统计,新方法的绘制

效率提升了43.5%,在接口数据、统计和修改方面优势明­显。其中,图纸标注和明细统计实­现自动统计生成,避免了人工统计环节,准确率可达100%,保证了设计质量。

5 结 语

本文提出了一种基于知­识组件的船舶空调通风­系统原理图快速生成方­法,将该系统的设备封装成­具有一组标准化接口的­知识组件,并对知识组件模型和属­性进行了定义。通过自定义实体技术,实现了知识组件的实体­建模,设计了知识组件实例化­过程。结合船舶空调通风系统­的设计特点,分析了基于知识组件的­系统原理图快速生成业­务模型和数据交换模型。在此基础上,以AutoCAD和 PDM系统为开发平台,开发了基于知识组件的­船舶空调通风系统原理­图快速生成原型系统,并在实际工程型号设计­中进行了广泛的应用验­证。结果表明,该原理图生成方法大幅­提升了图纸绘制效率及­其管理水平。

参考文献:

[1] 邵开文, 马运义.舰船技术与设计概论 [M]. 2 版. 北京:国防工业出版社, 2014: 40–42. SHAO K W, MA Y Y. Introducti­on to technology and design of ship[M]. 2nd ed. Beijing: National Defense Industry Press, 2014: 40–42 (in Chinese). [2] KUMAR A, ARYA A, SWAMINATHA­N V V, et al. Automatic generation of digital system schematic diagrams[J]. IEEE Design & Test of Computers, 1986, 3(1): 58–65.

[3] 刘伟, 王建华, 耿英三, 等. 基于 AutoCAD 的电气原理图识别 [J]. 计算机辅助设计与图形­学学报, 2003, 15(8): 1036–1039. LIU W, WANG J H, GENG Y S, et al. Recognitio­n of AutoCAD circuit drawing[J]. Journal of Computer-aided Design & Computer Graphics, 2003, 15(8): 1036–1039 (in Chinese). [4] 胡小林, 於黄萍. AutoCAD. NET API在管系原理图设­绘中的应用 [J]. 船舶与海洋工程, 2016, 32(1): 45–50. HU X L, YU H P. Applicatio­n of AutoCAD. NET API in piping diagram preparatio­n[J]. Naval Architectu­re and Ocean Engineerin­g, 2016, 32(1): 45–50 (in Chinese). [5] 常守明, 汪敏. 基于 FORAN 的轮机二维原理图应用­研究 [J]. 机械, 2018, 45(11): 20–23. CHANG S M, WANG M. Research on applicatio­n of 2D engineer schematic diagram based on FORAN software[J]. Machinery, 2018, 45(11): 20–23 (in Chinese). [6] 朱佳文, 田娣珺, 韩海荣. 基于 PDM系统的船舶设备­属性接口提交及管理技­术研究[J]. 制造业自动化, 2017, 39(5): 17–18, 31. ZHU J W, TIAN D J, HAN H R. Research on the technology of the interface submission and management of equipment in the ship basing on PDM[J]. Manufactur­ing Automation, 2017, 39(5): 17–18, 31 (in Chinese). [7] YANG Y S, PARK C K, LEE K H, et al. A study on the preliminar­y ship design method using determinis­tic approach and probabilis­tic approach including hull form[J]. Structural and Multidisci­plinary Optimizati­on, 2007, 33(6): 529–539. [8] 冯佰威, 刘祖源, 常海超. 多学科设计优化技术在­船舶初步设计中的应用 [J]. 中国造船, 2009, 50(4): 109–116. FENG B W, LIU Z Y, CHANG H C. Applicatio­n of multi-disciplina­ry design optimizati­on techniques in ships' preliminar­y design[J]. Shipbuildi­ng of China, 2009, 50(4): 109–116 (in Chinese). [9] 熊治国, 胡玉龙. 美国舰船概念方案设计­方法发展综述 [J]. 中国舰船研究, 2015, 10(4): 7–15. XIONG Z G, HU Y L. Review on the developmen­t of naval ship conceptual design methods of USA[J]. Chinese Journal of Ship Research, 2015, 10(4): 7–15 (in Chinese). [10] 刘向峰, 高志, 王玉勇. 原理图设计中的CAD 技术 [J].机械设计, 1994(5): 27–29. LIU X F, GAO Z, WANG Y Y. CAD technique in principle diagram design[J]. Machine Design, 1994(5): 27–29 (in Chinese). [11] 张顺琦, 秦现生, 邓瑞君, 等.组件化的装配生产线快­速设计 [J]. 中国机械工程, 2010, 21(21): 2584–2589. ZHANG S Q, QIN X S, DENG R J, et al. Componenti­zation in rapid design of assembly line[J]. China Mechanical Engineerin­g, 2010, 21(21): 2584–2589 (in Chinese). [12] 陈友东, 陈五一, 王田苗.基于组件的开放结构数­控系统 [J]. 机械工程学报, 2006, 42(6): 188–192, 198. CHEN Y D, CHEN W Y, WANG T M. Open architectu­re CNC controller based on the component technology[J]. Chinese Journal of Mechanical Engineerin­g, 2006, 42(6): 188–192, 198 (in Chinese). [13] 成尔京, 殷国富, 胡晓兵, 等.基于多组件智能体的机­械产品协同设计集成方­法 [J]. 中国机械工程, 2004, 15(1): 54–57. CHENG E J, YIN G F, HU X B, et al. Integrated method of mechanical product collaborat­ive design based on multi-component-agents[J]. China Mechanical Engineerin­g, 2004, 15(1): 54–57 (in Chinese).

[14] 郝佳, 杨海成, 阎艳, 等.面向产品设计任务的可­配置知识组件技术 [J]. 计算机集成制造系统, 2012, 18(4): 705–712.

HAO J, YANG H C, YAN Y, et al. Configurab­le knowledge component technology oriented to product design tasks[J]. Computer Integrated Manufactur­ing Systems, 2012, 18(4): 705–712 (in Chinese).

[15] 刘腾, 李庆华.利用组件技术开发三维­标准件库[J].计算机辅助设计与图形­学学报, 2002, 14(7): 697–700. LIU T, LI Q H. Flexible 3D standard part library based on COM techniques[J]. Journal of Computer-aided Design & Computer Graphics, 2002, 14(7): 697–700 (in Chinese).

[16] 孙守迁, 包恩伟,潘云鹤.面向产品布局设计的组­件特征模型[J]. 计算机辅助设计与图形­学学报, 1999, 11(1): 28–32. SUN S Q, BAO E W, PAN Y H. Component feature model for product layout design[J]. Journal of Computer-aided Design & Computer Graphics, 1999, 11(1): 28–32 (in Chinese).

[17] 覃斌, 阎春平, 刘飞. 基于特征域和结构组件­的CAD/ CAE集成建模方法 [J]. 计算机集成制造系统, 2011, 17(7): 1397–1403. QIN B, YAN C P, LIU F. CAD/CAE integrated modeling method based on characteri­stic domain and structure component[J]. Computer Integrated Manufactur­ing Systems, 2011, 17(7): 1397–1403 (in Chinese).

[18] 张晓东, 王明生. AutoCAD环境下­的铁路线路平纵横集成­交互设计[J]. 工程图学学报, 2006, 27(5): 12–15. ZHANG X D, WANG M S. Integrated interactiv­e design of plan with profile and cross-section of railway line in AutoCAD environmen­t[J]. Journal of Engineerin­g Graphics, 2006, 27(5): 12–15 (in Chinese).

[19] 中华人民共和国工业和­信息化部.船舶产品专用图样和技­术文件编号: CB/T 14-2011[S]. 北京:中国船舶工业综合技术­经济研究院, 2011. Ministry of Industry and Informatio­n Technology. Numbering for special drawings and technical documents of marine product: CB/T 14-2011[S]. Beijing: China Shipbuildi­ng Industry Comprehens­ive Technical and Economic Research Institute, 2011 (in Chinese).

[20] 国防科学技术工业委员­会.船舶产品通用图样和技­术文件编号: CB/T 13-2007[S]. 北京:中国船舶工业综合技术­经济研究院, 2007. Commission of Science, Technology and Industry for National Defense, CPLA. Numbering for general drawings and technical documents of ship product: CB/T 132007[S]. Beijing: China Shipbuildi­ng Industry Comprehens­ive Technical and Economic Research Institute, 2007 (in Chinese).

(上接第70 页)

[5] LIU M T, GAI M, LAI S N. Simulating unmanned aerial vehicle flight control and collision detection[J]. Visual Computing for Industry, Biomedicin­e, and Art, 2019, 2(1): 1–7.

[6] QI B B, PANG M Y. An enhanced sweep and prune algorithm for multi-body continuous collision detection[J]. The Visual Computer, 2019, 35(11): 1503–1515.

[7] 王达鹏, 罗显光,闭业宾,等.分布式碰撞检测在装配­仿真中的应用[J].机械科学与技术, 2015, 34(9): 1394–1398. WANG D P, LUO X G, BI Y B, et al. Applicatio­n of distribute­d collision detection in assembly simulation[J]. Mechanical Science and Technology for Aerospace Engineerin­g, 2015, 34(9): 1394–1398 (in Chinese).

[8] 李普.虚拟装配中基于分离距­离的快速碰撞检测算法­研究[D].大连:大连海事大学, 2018. LI P. Research on fast collision detection algorithm based on separation distance in virtual asssembly[D]. Dalian: Dalian Maritime University, 2018 (in Chinese).

[9] 李普, 孙长乐, 熊伟,等.一种基于半透明颜色叠­加与深度值的碰撞检测­算法[J].计算机科学, 2018, 45(增刊1): 193–197, 233. LI P, SUN C L, XIONG W, et al. Collision detection algorithm based on semi-transparen­t color overlay and depth value[J]. Computer Science, 2018, 45(Supp 1): 193–197, 233 (in Chinese).

[10] 杜群.基于蚁群算法的碰撞检­测在虚拟装配中的应用[D]. 北京:华北电力大学, 2019. DU Q. Applicatio­n of collision detection based on ant colony algorithm in virtual assembly[D]. Beijing: North China Electric Power University, 2019 (in Chinese).

[11] 卢江,钱德英,周伟中,等.基于观察坐标与混合包­围盒的装配碰撞检测方­法[J]. 船舶工程, 2019, 41(9): 12–16, 51. LU J, QIAN D Y, ZHOU W Z, et al. Assembly collision detection method based on observatio­n coordinate­s and hybrid bounding box[J]. Ship Engineerin­g, 2019, 41(9): 12–16, 51 (in Chinese).

[12] GOTTSCHALK S, LIN M C, MANOCHA D. OBBTree: a hierarchic­al structure for rapid interferen­ce detection[C]// Proceeding­s of the 23rd Annual Conference on Computer Graphics and Interactiv­e Techniques. New Orleans, LA, USA: ACM, 1996.

[13] HELD M. ERIT—a collection of efficient and reliable intersecti­on tests[J]. Journal of Graphics Tools, 1997, 2(4): 25–44.

[14] 田富君, 张红旗, 张祥祥,等.基于轻量化模型的三维­装配工艺文件生成技术[J]. 制造业自动化, 2013, 35(10): 46–50. TIAN F J, ZHANG H Q, ZHANG X X, et al. Three-dimensiona­l assembly process file generate technology based on lightweigh­t model[J]. Manufactur­ing Automation, 2013, 35(10): 46–50 (in Chinese).

 ??  ?? 扫码阅读全文
扫码阅读全文
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ?? 图9 原型系统主界面Fig. 9 Main interface of invocation
图9 原型系统主界面Fig. 9 Main interface of invocation
 ??  ?? 图 10 原型系统知识组件调用­界面Fig. 10 Interface of invocation for knowledge components
图 10 原型系统知识组件调用­界面Fig. 10 Interface of invocation for knowledge components
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China