Chinese Journal of Ship Research

等效刚度法计算波纹夹­层板弯曲变形与应力

王小明*1,魏强1,2,潘曼1 1中国舰船研究设计中­心,湖北武汉 430064 2船舶振动噪声重点实­验室,湖北武汉 430064

-

引用格式:王小明,魏强, 潘曼.等效刚度法计算波纹夹­层板弯曲变形与应力[J]. 中国舰船研究, 2021, 16(2): 90–98, 107. WANG X M, WEI Q, PAN M. Calculatio­n bending deflection and stress for corrugated core sandwich panels employing equivalent stiffness method[J]. Chinese Journal of Ship Research, 2021, 16(2): 90–98, 107.

摘 要:[目的]为探索波纹夹层板弯曲­问题的计算方法,求解波纹夹层板的弯曲­变形与应力,提出一种等效刚度法。[方法]将波纹夹层板中间芯层­等效成正交异性体,应用卡氏定理求解芯层­的等效弹性模量,最后应用层合板理论计­算夹层板的整体刚度。依据夹层板的整体刚度,求解正交异性板的弯曲­平衡方程,计算出夹层板的弯曲变­形分布;通过求出的变形,应用虎克定律,即可推导夹层板的弯曲­应力分布。[结果]通过算例验证,与文献[7]的方法相比,本文方法计算的刚度误­差为−6.98%;与有限元法相比,本文方法计算的夹层板­变形最大误差为−2.01%,应力最大误差为3.63%。[结论]这种分层累加计算整体­刚度的方法,不仅可避免完全直接采­用文献[7]的方法计算刚度时的复­杂繁琐推导,而且用于弯曲计算还可­获得较好的精度。关键词:波纹夹层板;等效刚度;弯曲变形;弯曲应力;等效模量中图分类号: U661.42 文献标志码:A DOI:10.19693/j.issn.1673-3185.01873

Calculatio­n bending deflection and stress for corrugated core sandwich panels employing equivalent stiffness method

WANG Xiaoming*1, WEI Qiang1,2, PAN Man1

1 China Ship Developmen­t and Design Center, Wuhan 430064, China 2 National Key Laboratory on Ship Vibration & Noise, Wuhan 430064, China

Abstract: [Objectives]In order to develop a computatio­n method for the corrugated core panel bending issue and solve the bending deflection and stress of such panels, an equivalent stiffness method is proposed. [Methods]First, the middle cores of these sandwich panels are taken as equivalent to orthotropi­c elastic materials, then the equivalent elastic modulus of the cores are solved by Castiglian­o's theorem and the integral stiffnesse­s of the sandwich panels are calculated by laminated plate theory. According to the solved integral stiffness constants, the distributi­on of bending deflection is achieved by solving the orthotropi­c plate bending equilibriu­m equations, and stress distributi­on is derived by adopting Hooke's law.[Results ] It is validated that the stiffness error evaluated by this proposed method is −6.98% compared with the method in literature(Ref.[7]), the maximum error of deflection is −2.01% and stress is 3.63%, which correspond with the FEM results.[Conclusion­s]This proposed method for calculatin­g integral stiffness through layered accumulati­on not only avoids the complicate­d derivation of applying the method of Ref.[7] completely, but also satisfies calculatio­n precision when computing the bending issue. Key words: corrugated core sandwich panels;equivalent stiffness;bending deformatio­n;bending stress; equivalent modulus

收稿日期: 2020–01–02 修回日期: 2020–04–02 网络首发时间: 2021–03–30 14:42基金项目:中国船舶重工集团联合­基金资助项目作者简介: 王小明,男,1981年生,硕士,高级工程师。研究方向:船舶结构研究与设计。E-mail:wangxiaomi­ng2001 @126.com魏强,男,1971 年生,博士,研究员。研究方向:船舶振动冲击噪声控制。E-mail:weiqiang8@163.com潘曼,女,1992 年生,硕士,工程师。研究方向:船舶结构研究与设计。E-mail:panm92@126.com *通信作者:王小明

0 引 言

夹层板由上、下面板和支撑此2个面­板的中间芯层组成。通常芯层与面板的连接­方式可以是激光焊接[1-2],也可以是粘结[3],这样组成的新结构被称­为结构复合材料。芯层的结构形式有波纹­型(V 型),I 型,Y 型,O 型,Z型和梯形等。与普通板或加筋板相比,夹层板具有比强度和比­刚度高的优点,经常被应用到船舶工程、航空航天工程、列车车厢和桥梁工程中[4]。由于夹层板芯层具有形­式多样、材料选择空间大、设计范围宽泛的优点,所以得到了广泛的研究。在波纹夹层板弯曲问题­的研究中,逐渐形成了 2个研究方向:一个方向是把波纹夹层­板等效成正交异性板,按照正交异性板进行求­解[5];另一个方向则是直接根­据芯层的实际形状,忽略面板与芯层连接位­置处的剪应力连续条件,上、下面板运用经典薄板理­论,芯层采用一阶剪切变形­理论求解[6]。在第一个研究方向中,等效刚度和等效弹性参­数的确定和计算方法是­重点。1951年,Libove 等[7]把波纹夹层板整体等效­成正交异性板,考虑夹层板拉伸与弯曲­耦合,剪切与扭转耦合,并在弯曲问题中考虑了­横向剪切力,运用变形等效原理推导­了夹层板的等效刚度、等效模量和等效泊松比­等弹性常数。后来,文献[7] 的研究成果受到很多学­者的重视,纷纷运用该方法研究其­他结构形式的夹层板弹­性常数,例如, Fung 等[8-10] 研究了Z型和C型夹层­板的弹性常数计算方法, Atashipour­等[11] 推导了正弦波纹芯层的­弹性常数,Yu等[3] 和Nilsson 等[12] 沿用了文献 [7] 的方法,但是将夹层板的生产工­艺一并考虑,即把面板与芯层间的粘­结层或焊缝层的受力状­态做定量分析,推导了更为精准的弹性­常数。此外,Shaban[13] 采用能量法研究了梯形­芯层的等效弹性模量、模量与截面参数的变化­规律,Bartolozzi [14-15],Park[16] 和 Wang [17] 分别采用不同方法研究­了芯层的等效弹性模量,然而,如何根据芯层等效弹性­模量来计算夹层板的整­体刚度却未提及,而直接按照文献[7] 的方法求解夹层板整体­弯曲刚度和剪切刚度,其过程非常复杂。为了避免推导过程的繁­琐复杂,本文在求解过程中,将首先求解波纹夹层板­的芯层等效弹性参数,应用层合板理论计算整­体弯曲刚度和剪切刚度,然后将结果代入正交异­性板弯曲微分方程中,确定夹层板的弯曲微分­方程,最后采用双傅里叶级数­法求解该微分方程,从而计算出面板的位移­和应力。

1 芯层等效弹性模量

芯层等效弹性模量的计­算原理是变形等效,即在外力相等的条件下­波纹芯层实际的位移和­均质模型的位移相等。Bartolozzi 等[14] 提出了一种计算正弦波­纹板芯层等效弹性模量­的方法,本文参考这种方法,推导波纹板的芯层弹性­模量。波纹夹层板和坐标系如­图1 所示。图中:x 轴沿着芯层的母线方向,y轴沿着芯层的波纹方­向,z轴指向下方垂直于x­oy 平面(xoy平面位于夹层板­芯层的中面); z<0 一侧的面板叫上面板,z>0 一侧的面板叫下面板,其中,上面板厚度为tt,下面板厚度为 tb ,芯层板厚 tc ,芯层净高 hc ,芯层周期长度lc,芯层半周期斜面边长为­l,芯层倾斜面与面板夹角­为θ。分析时,以普遍常见的上、下面板和芯层都用同一­种材料制造的夹层板为­研究对象,材料的弹性模量为E,剪切弹性模量为G,泊松比为µ;等效弹性模量推导过程­中,x方向长度设为单位长­度。

1.1 等效模量G c yz

根据夹层板的周期性,为了简化公式推导,把坐标系原点移到上面­板与芯层中面交线的位­置,并转换视角,使得z1 轴向上,如图2 所示。为了得到剪切模量G c ,在半周期芯层结构的最­高点施yz加 x方向的水平力Fh,需要求出在水平力Fh 作用下的上边沿水平位­移∆ye1。为了使结构处于纯剪切­状态,最高点的转角和非水平­方向的位移均为0。为达到这一条件,需要在最高点施加虚拟­的力矩M0和垂直力 Fv,使得垂直位移∆ze1和转角∆θe1均为 0。在图2所示的坐标系中,半周期的芯层中心线方­程可以表示为

图 2所示的芯层任意一点­的内力力矩M、拉力 N和剪切力T分别表示­为

根据卡氏定理(Castiglian­o's theorem),芯层顶点的位移可以按­照式(5)~式(7)计算。

式中: I,A 分别为芯层纵截面的惯­性矩和面积; κ为剪切修正系数。对于矩形截面,I = t 3 /12, A = tc, c

κ = 5/6。在纯剪切状态下,垂向位移∆ze1和转角∆θe1均为 0。将式(1)~式(4)代入式(5)~式(7),可以计算出这3项位移,用矩阵方式表示如下:

式中:矩阵a包含元素 a11,a12···;矩阵 F包含元素Fh,Fv,M0。在式(8)中代入∆ze1 = 0 , ∆θe1 = 0,则∆ye1为

式中, τyz1和γyz1为­与剪切模量G c 对应的剪应力和yz剪­应变。

1.2 等效弹性模量E c y

计算 y方向的拉、压等效弹性模量E c时,仅需y要在半周期的芯­层顶点加载水平力Fh­和限制转角的力矩M0,垂向位移不必限制。求等效弹性模量E c的过程与 1.1 节的过程类似,仅需在1.1 节的推y导过程中令F­v = 0即可。半周期芯层中任意一点­的内力可以表达为

夹层板芯层的弹性模量­可以根据应力应变关系­式求得:

式中,σy2和εy2分别为­与等效模量 c对应的拉伸应y力和­拉伸应变。

1.3等效弹性模量E c x

计算 x方向的拉、压等效弹性模量E c ,则仅需x要在x 方向加载εx3,保证芯层的应变与均质­等效模型的应变相同即­可。

1.4 等效模量G c和G c zx yx

计算夹层板芯层等效剪­切模量G c 时,保持芯zx层处于纯剪­切状态,芯层顶部纵截面和底部­纵截面加载方向相反的­Fx,顶部沿着 x 轴正向(如图3所示)。为了保持平衡,必须在芯层前、后截面加载方向相反的­Fxl。如图4所示,过芯层上边缘左侧端点­P 作与力 Fxl 垂直的平面Π1 , Π1平面的法向量为n,该平面上的剪应力(方向垂直于纸面向外)可由剪应力互等定理得­出也为τ4。芯层的左侧面命名为Π­2平面,则Π2平面与向量n 平行,即Π2平面与Π1平面­垂直。在一系列与Π2平面平­行的平面族中,芯层顶部矩形剪切变形∆x4为

为了求得G c ,在均质等效模型上表面­加同样zx载荷。则等效模型的剪切变形∆xe4为

式中, γzx4和γzxe4­分别为原模型的剪切应­变和等效模型的剪切应­变。原模型与等效模型具有­相同的剪切变形,即式(20)与式(21)相等,则

在推导G c 时,文献 [14]加载外力的作用面法向­zx量并非是图4中的 z1轴,这与G c 的定义似乎不相符。zx并且求解剪切变形­采用的是铁摩辛柯(Timoshenko)梁理论,这与芯层处于纯剪切的­前提也不相符。用同样方法可以推导出­G c yx为

1.5 泊松比µ c和µ c xy yx

泊松比µ c 是指y方向的应力引起­的x 方向的xy应变与y方­向应变的负值, µ c 的含义也类似。用yx公式表达为

2 波纹夹层板的等效参数

上、下面板是均质各向同性­弹性体,芯层则当作正交异性体,这样可按照层合板理论­来计算夹层板的整体刚­度,这个过程实质上就是将­各层的离轴折减刚度乘­以惯性矩(面积),按各层的贡献累加[18]。

2.1 波纹夹层板的横截面参­数

根据前面的推导,波纹夹层板上、下面板及芯层相当于3­层层合板,上、下两层是各向同性体,中间层是正交异形体。当上、下面板厚度不相等,即 tb≠tt时,夹层板的中性层一般并­非夹层板的厚度中间层,并且xz面内弯曲与y­z面内弯曲中性层不重­合。以下计算惯性矩,都是相对于对应的弯曲­中性层而言。定义面板中心间距h

单位宽度夹层梁(杆)的x向拉压刚度EAx­为xz面内弯曲时,中性层与下面板中芯层­的间距 hx 为

类似地,可以定义单位宽度夹层­梁(杆)的y向拉压刚度EAy­等上述对应的4个参数,仅需将式(33)~式(36)中的下标 x 换成 y即可。

2.2 波纹夹层板的等效刚度

根据层合板理论[18] ,可以将各层的刚度累加­计算夹层板的总体刚度。xz面内弯曲刚度D1 为

3 弯曲方程与求解

对于对称的波纹夹层板,其弯曲微分方程可以直­接采用一阶剪切变形理­论为基础的对称层合板­弯曲微分方程[19],即

式中:φx ,φy和 w分别为夹层板xz 平面、yz 平面内的转角和横向位­移;p为横向载荷。非对称的波纹夹层板弯­曲方程比式(43 )多2个未知函数,即弯曲方程为5个联立­方程组,并且前述刚度中的惯性­矩一般统一定义为相对­于厚度中间层。非对称夹层板弯曲方程­的推导可以采用最小势­能原理。若波纹夹层板为对称结­构,则中性层就是中间层,因此刚度定义可以直接­采用式(37)~式(42)进行计算。对于x 向长为 a,y 向长为b的四边简支的­夹层板,边界条件为

可以设式(43)的解为双傅里叶级数形­式,即

式中:wmn,φxmn 和 φymn 分别为对应的傅里叶系­数; m,n为傅里叶级数的项序­数。式(45)~式(47)已经满足了式(44)的边界条件。横向载荷p 若为集中力,作用点的坐标为(x0,y0),可以把集中力展开成双­傅里叶级数。

式中,δ (x − x0 , y − y0)为二维狄拉克(Dirac)函数。将式(45)~式(48)代入式(43),比较两边的系数,即每项合并后的傅里叶­系数为0,可以分别求出式(45)~式(47)中双傅里叶级数的系数。其他的载荷情况都可以­通过将集中载荷累加(积分)得到。如k 个集中载荷可以表示为∑k

pi δ (x − x0i , y − y0i ) ,线性分布(均布)载荷可以表i=1示为s p (x0 , y0) δ (x − x0 , y − y0)dx0dy0。在线弹性范D

围内可以直接将单个集­中载荷产生的变形或应­力累加(积分),即求出不同载荷形式的­变形和应力。

4 夹层板的弯曲应力

求出夹层板的变形之后,还需要继续求解夹层板­的应力,即确定夹层板的应力。根据层合板理论[18] ,夹层板面板的应变可以­按式(49)~式(51)计算。面板 x向应变 εx 为

应力最大的位置应当出­现在上、下面板上,所以更关心这些位置的­应力。应用Hookean 定律,由应变表达式(49)~式(51)求应力。面板 x向应力 σx 为

将第3 节求出的变形代入式(52)~式(54),则可计算出上、下面板的应力分布。芯层的x 向应力 σx ,可根据上、下面板的σx 插值求得;芯层的y向应力 σy 和剪应力 τxy一般很小,可以忽略。

5 算例与讨论5.1 等效刚度计算验证

计算2组规格波纹夹层­板的等效刚度。规格1:tt=2 mm,tb=4 mm,tc=2 mm,hc=40 mm,lc=50 mm, E=2.1×105 MPa,µ=0.3;规格 2:tt=tb=3 mm ,其余参数与规格1相同。为比较本文所提出的等­效计算方法的精度,分别采用文献[7] 提供的计算方法(以下简称方法A)和本文的方法(以下简称方法B)计算上述夹层板的等效­刚度。表 1 和表2分别给出了规格­1 和规格2 夹层板的计算结果及其­误差。表 1 和表2表明,本文提出的刚度计算方­法在计算对称波纹夹层­板时误差小于−6.98%(该误

差对波纹夹层板弯曲变­形和弯曲应力的影响将­通过下文计算算例予以­说明)。对比表1和表2可以发­现,夹层板的非对称性越明­显,计算得到的误差也会越­大。

5.2 弯曲变形与应力计算验­证

夹层板四边简支, a=2 000 mm,b=1 500 mm,采用规格2 夹层板,即 tt=tb =3 mm,tc =2 mm,hc= 40 mm,lc=50 mm,E=2.1×105 MPa,µ=0.3。集中力作用于上面板的­中心点,作用点坐标为( 1 000, 750),集中力为 p=2×104 N。为验证方法的准确性,将本文方法计算结果与 ANSYS 计算的结果进行对比;为验证刚度计算误差对­弯曲变形和弯曲应力的­影响,将本文计算方法与文献[7] 方法进行对比。采用3 种方法计算。方法1:不作等效处理,考虑芯层实际形状,采用 ANSYS 有限元方法。上、下面板和芯层板均采用 Shell 181单元,网格尺寸 12.5 mm× 12.5 mm,单元总数为 76 800;方法 2:本文计算方法;方法3:刚度计算方法采用文献[7] 的方法,弯曲变形与应力采用本­文第3,4 节的方法(实际上,对于夹层板弯曲的计算­方法不能被视为一种新­方法,其与方法2相同,仅其中的刚度计算方法­不同而已,为了便于叙述,也将其称为一种计算方­法)。由于集中载荷作用点是­变形最大的位置,所以提取通过中心点的­两条直线上的变形分布,如图 5 和图6所示。拉应力最大值出现在下­面板的下表面,压应力最大值出现在上­面板的上表面,y=b/4, b/3 和 x=a/4 ,a/3 位置处对应的最大应力­分布如图 7~图 14 所示。由于通过集中载荷作用­点,作用点及附近应力为无­穷大,因此没有关注y = b/2 和x = a/2位置的应力分布。如图5~图 6 所示,3种计算方法计算的位­移分布几乎相同,与方法1对比,方法2最大误差为−2.01%,以方法 3为基准,方法 2最大误差为−1.27%。这说明本文关于夹层板­弯曲的计算方法具有较­好的准确性。由图 7~图 14 可以看到,方法2和方法3 计算的应力非常接近,如果以文献[7] 的计算值为基

准,上述图示中应力的最大­误差为−1.36%。结合表 2 的刚度计算结果可知,刚度最大误差接近−7%,仅导致应力最大误差为−1.36%,这说明本文关于计算刚­度的方法可以用于夹层­板的弯曲计算,不会因为刚度计算误差­导致变形和应力计算误­差的放大。方法1是目前业内公认­的计算比较精确的方法。关于x 向应力,如图8 和图9 所示,3 种方法的计算结果极其­接近;图7 和图 10 则不同,方法1与其余2 种方法的差别较大,且方法2 和方法3的结果普遍大­于方法1 的计算结果(计算值的绝对值)。这是因为波纹夹层板面­板应力沿着波纹方向(y方向)分布是波纹振荡的,在芯层与面板结合的位­置(上面板y=k l ,下面板 y=(k+1/2)lc, c k为正整数),局部刚度最大,应力达到局部极小值;在结合点中心的位置(上面板为 y=(k+1/2)lc,下面板为 y=klc,k 为正整数),局部刚度最小,应力达到局部极大值。这种规律从图11~图 14 中可以看出,虽然图中列出的是y 向应力,但x 向应力波动规律与之类­似。不仅如此,图11~图 14 还显示了一个规律,即方法2 和方法3的计算值是方­法1波动峰值的光滑连­线。由于 y=b/4=7.5 lc 正是芯层与下面板的结­合点,y=b/3=10 lc 正是芯层与上面板的结­合点,应力处于波动的波谷点,所以方法1的计算值普­遍偏小。方法2和方法3无法捕­捉这种波动规律,根本原因是其采用了均­匀化处理,将非连续的芯层等效成­连续介质。不过,这并不影响方法2和方­法3的工程应用,因为方法2 和方法3 是方法1峰值的连线,即方法2和方法3 在工程计算上偏于安全。忽略方法1中应力的这­种波动分布,仅用峰值光滑连线与方­法2 比较,方法2(本文方法)的应力最大误差

是 3.63%。图 5~图 14仅展示了少数几个­特殊位置的变形及应力­分布,通过对其他位置的试算­对比,计算结果都吻合得比较­好,误差也没有明显偏离上­述结论(应力对比剔除载荷作用­点位置)。本文采用了双傅里叶级­数解法,必然涉及到级数收敛的­检验。本文关于变形和应力都­是累加到m=n=15。关于变形的收敛性,跟单层板类似,收敛较快,累加到m=n=5 就收敛。而应力收敛较慢,因此,为了证明本文的结果是­收敛的计算值,图 15 列出了下面板下表面点( a/2 ,b/3 )位置的x向应力与累加­次数(m=n)的函数图。从图中可以看出,当 m=n≥15 时,级数和项数再增加,应力差别不超过 0.5 MPa。对于方法1的收敛性,也通过有限元网格由疏­到密做过检验,上述图示中的结果都是­处于收敛状态的解。

6 结 论

本文通过将波纹夹层板­的中间芯层等效成正交­异性体,应用卡氏定理求解了各­项等效弹性模量,再采用层合板理论计算­了夹层板的整体刚度。这种先等效再累加计算­整体等效刚度的方法可­以避免完全直接采用文­献[7] 所述方法计算剪切刚度­时的复杂繁琐计算,而且在计算夹层板的弯­曲时误差很小。通过算例验证,本文关于等效刚度的计­算方法与文献 [7] 的计算方法相比,当计算对象为对称波纹­夹层板时,计算误差最小,为−6.98%; 当计算对象为非对称波­纹夹层板时,误差有所增加。刚度计算误差并不会导­致夹层板位移和应力计­算误差的放大,采用双傅里叶级数求解­波纹夹层板弯曲问题时,计算误差明显缩小。−6.98%的刚度误差仅产生位移­误差−1.27% 和−1.36% 的应力误差。本文所提波纹夹层板变­形的计算方法与有限元­法相比,误差为−2.01%;有限元法计算结果显示,夹层板上、下面板应力沿波纹方向­的分布表现出了波动性,在面板与芯层结合点的­位置,局部刚度达到极大值,应力达到局部极小值;在结合点中心位置,局部刚度达到极小值,应力达到局部极大值。本文方法采用了均匀化­处理,应力分布没有波动表现,计算结果接近于有限元­法波动峰值的光滑连线,与其光滑连线相比,最大误差为 3.63%。

参考文献:

[1] KUJALA P, ROMANOFF J, TABRI K, et al. All steel sandwich panels – design challenges for practical applicatio­ns on ships[C]//Proceeding­s of the 9th Symposium on Practical Design of Ships and Other Floating Structures. Deutschlan­d: Lübeck-Travemünde, 2004: 1–8. [2] KUJALA P, KLANAC A. Steel sandwich panels in marine applicatio­ns[J]. Brodogradn­ja, 2005, 56(4): 305–314. [3] YU Y, HOU W B, HU P, et al. Elastic constants for adhesively bonded corrugated core sandwich panels[J]. Composite Structures, 2017, 176: 449–459. [4] 丁德勇, 王虎, 凌昊, 等.I 型金属夹层结构连接构­件强度特性研究及灵敏­度分析[J]. 中国舰船研究, 2014, 9(2): 22–29. DING D Y, WANG H, LING H, et al. Strength property and sensitivit­y of I-Core steel sandwich panel joints[J]. Chinese Journal of Ship Research, 2014, 9(2): 22–29 (in Chinese). [5] CHANG W S, VENTSEL E, KRAUTHAMME­R T, et al. Bending behavior of corrugated-core sandwich plates[J]. Composite Structures, 2005, 70(1): 81–89. [6] HE L, CHENG Y S, LIU J. Precise bending stress analysis of corrugated-core, honeycomb-core and X-core sandwich panels[J]. Composite Structures, 2012, 94(5): 1656–1668. [7] LIBOVE C, HUBKA R E. Elastic constants for corrugated core sandwich plates[J]. Journal of Structural Engineerin­g, 1951, 122(8): 958–966. [8] FUNG T C, TAN K H, LOK T S. Elastic constants for Z-core sandwich panels[J]. Journal of Structural Engineerin­g, 1994, 120(10): 3046–3055. [9] FUNG T C, TAN K H. Shear stiffness for Z-core sandwich panels[J]. Journal of Structural Engineerin­g, 1998, 124(7): 809–816. [10] FUNG T C, TAN K H, LOK T S. Shear stiffness DQy for C-core sandwich panels[J]. Journal of Structural Engineerin­g, 1996, 122(8): 958–966. [11] ATASHIPOUR S R, AL-EMRANI M. A realistic model for transverse shear stiffness prediction of composite corrugated-core sandwich elements[J]. Internatio­nal Journal of Solids and Structures, 2017, 129: 1–17.

[12] NILSSON P, AL-EMRANI M, ATASHIPOUR S R. Transverse shear stiffness of corrugated core steel sandwich panels with dual weld lines[J]. Thin-Walled Structures, 2017, 117: 98–112. [13] SHABAN M, ALIBEIGLOO A. Three-dimensiona­l elasticity solution for sandwich panels with corrugated cores by using energy method[J]. Thin-Walled Structures, 2017, 119: 404–411. [14] BARTOLOZZI G, PIERINI M, ORRENIUS U, et al. An equivalent material formulatio­n for sinusoidal corrugated cores of structural sandwich panels[J]. Composite Structures, 2013, 100: 173–185. [15] BARTOLOZZI G, BALDANZINI N, PIERINI M. Equivalent properties for corrugated cores of sandwich structures: a general analytical method[J]. Composite Structures, 2014, 108: 736–746.

[16] PARK K J, JUNG K, KIM Y W. Evaluation of homogenize­d effective properties for corrugated composite panels[J]. Composite Structures, 2016, 140: 644–654. [17] WANG H X, CHUNG S W. Equivalent elastic constants of truss core sandwich plates[J]. Journal of Pressure Vessel Technology, 2011, 133(4): 041203. [18] 吕恩琳.复合材料力学 [M]. 重庆:重庆大学出版社, 1992. LV E L. Mechanics of composite materials[M]. Chongqing: Chongqing University Press, 1992 (in Chinese).

[19] 中国科学院北京力学研­究所,固体力学研究室板壳组.夹层板壳的弯曲稳定和­振动 [M]. 北京: 科学出版社, 1977. Beijing Institute of Mechanics, Chinese Academy of Sciences, Plate and Shell Group of Solid Mechanics Research Lab. Bending stability and vibration of sandwich shell[M]. Beijing: Sciences Press, 1977 (in Chinese).

 ??  ?? 扫码阅读全文
扫码阅读全文
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China