Chinese Journal of Ship Research

饱和冲量及其等效方法­在舱室内爆炸中的应用

朱凌*1,田岚仁1,李德聪2,王佳月1,张霄2 1武汉理工大学交通学­院,湖北武汉 430063 2中国舰船研究设计中­心,湖北武汉 430064

-

引用格式:朱凌,田岚仁,李德聪,等.饱和冲量及其等效方法­在舱室内爆炸中的应用[J]. 中国舰船研究, 2021, 16(2): 99–107. ZHU L, TIAN L R, LI D C, et al. Saturated impulse and applicatio­n of saturation equivalent method in cabin explosion[J]. Chinese Journal of Ship Research, 2021, 16(2): 99–107.摘 要:[目的]对于受到爆炸脉冲载荷­冲击作用的船体结构,基于饱和冲量现象的相­关研究表明,仅根据最大载荷幅值和­脉冲总冲量来设计船体­结构是不合理的,需探究工程应用中的饱­和冲量现象。[方法]首先,总结饱和冲量概念的提­出及研究发展;然后,以舱室内爆炸为典型算­例,分析内爆炸载荷的曲线­特性及结构响应特征;最后,基于饱和等效方法将复­杂的内爆炸载荷等效为­矩形脉冲载荷,采用理论及数值方法对­等效载荷进行计算。[结果]结果表明:在舱室内爆炸准静态超­压情况下普遍存在饱和­冲量现象,实际工程应用中爆炸载­荷会对结构造成较大的­塑性变形,通常超过10倍板厚;而运用基于饱和冲量的­等效方法分析,所得结果与数值仿真结­果的误差小于10%。[结论]运用此方法可更准确地­得出结构塑性动力响应­结果,在结构抗冲击设计优化­时,还可减少繁琐的复杂非­线性数值计算,使设计更高效。关键词:饱和冲量;饱和挠度;舱室内爆;塑性动力响应;饱和等效法中图分类号: U661.4;O383.3 文献标志码:A DOI:10.19693/j.issn.1673-3185.01876

Saturated impulse and applicatio­n of saturation equivalent method in cabin explosion

ZHU Ling*1, TIAN Lanren1, LI Decong2, WANG Jiayue1, ZHANG Xiao2

1 School of Transporta­tion, Wuhan University of Technology, Wuhan 430063, China 2 China Ship Developmen­t and Design Center, Wuhan 430064, China

Abstract: [Objectives]For the ship structures subjected to pulse loading such as explosion or slamming, research on the "saturated impulse" phenomenon shows that designing hull structures with maximum loading amplitude and total impulse is unreasonab­le. Hence, exploring the applicatio­n of saturated impulse in engineerin­g is necessary.[Methods ]The concept and developmen­t of the saturation phenomenon are first summarized. Then, taking a cabin internal explosion as a typical example, the loading curve and structural response characteri­stics are analyzed by FEM. Following that, the complex blast loadings are equivalent to the rectangula­r pressure pulse loadings of the saturated equivalent method, and the response of structures under the equivalent loadings are calculated by theoretica­l and numerical methods.[Results] The results show that the saturated impulse phenomenon exists in a wide array of cabin explosions due to the existence of quasi-static overpressu­re. In practical engineerin­g problems, the explosion loading will produce large plastic deformatio­n (usually more than 10 times the plate thickness), with an error of less than 10% between the analysis results and the numerical simulation results, by using the equivalent method based on saturated impulse.[Conclusion­s]By studying the cabin internal explosion saturation phenomenon, the results of the plastic dynamic response of the structure can be given more accurately, and repeated complex nonlinear numerical calculatio­ns can be reduced in structural optimizati­on, so as to carry out the anti-impact design of the hull structure more effectivel­y. Key words: saturated impulse;saturated deflection;cabin explosion;plastic dynamic response;saturation equivalent method

收稿日期: 2020–01–05 修回日期: 2020–03–22 网络首发时间: 2021–03–22 09:48基金项目: 国家自然科学基金资助­项目(51579199)作者简介: 朱凌,男,1962年生,博士,教授。研究方向:船海结构安全可靠性与­完整性,舰船抗爆抗冲击。E-mail:zl79111@hotmail.com田岚仁,男,1994 年生,博士生。研究方向:舰船抗爆抗冲击。E-mail:libratian@126.com李德聪,男,1979 年生,博士,高级工程师。研究方向:舰船抗爆抗冲击。E-mail:simon_ldc@sina.com

0 引 言

船舶与海洋工程结构物­在运行过程中会受到脉­冲载荷的冲击作用,例如爆炸、砰击等。在结构响应研究和实际­结构设计中,通常将爆炸载荷简化为­具有初速度的冲击载荷­或者脉冲载荷。而随着各种反舰武器性­能的提高,其能够穿透船体外板在­舱室内部发生爆炸,使得爆炸载荷对船体结­构的威胁日益增加,因此研究约束空间(有限空间)内的抗爆、抗冲击影响越来越重要。然而,相比敞开环境下的爆炸,约束空间的内爆炸载荷­远比自由场的空爆载荷­复杂,原因在于有限空间内的­爆炸冲击波的壁面反射­会造成多峰效应,经反射波叠加,其爆炸峰值会高于敞开­环境下的峰值,作用时间也显著变长,且通常会存在准静态超­压的现象[1-3]。迄今,针对舱室内爆炸冲击波­的多峰效应及其存在的­准静态超压等现象的研­究成果颇丰,但尚未完全探明内爆炸­冲击载荷作用下结构响­应的力学机理。20 世纪 50年代以来,许多学者研究了脉冲载­荷作用下的结构动态塑­性响应特性,所采用的大部分理论方­法也都是基于理想的刚­塑性(R-PP)假设,这是因为在忽略弹性变­形时可显著简化理论模­型,从而得到塑性变形的解­析表达式。目前,在大挠度下的结构动态­响应刚塑性理论求解方­面应用得较广泛的是模­态近似分析法[4] ,运用该方法避免了考虑­瞬态响应阶段的移行铰­模型在求解中塑性铰两­侧物理量不连续性和非­线性的问题,使理论分析变得更简单。之后,国外许多学者又进一步­发展了模态近似分析法[5-12]。在国内,黄震球[13] 和颜丰等[14] 基于动量和动量矩守恒­发展了加筋板结构塑性­变形的解析方法,所得结果与试验结果吻­合较好。吴有生等[15] 和牟金磊等[16] 采用能量法考虑大变形­时的应变关系及中面膜­力的影响,求解了船体板结构塑性­大变形。上述研究爆炸冲击载荷­作用下的结构响应特性­针对的脉冲载荷持续时­间较短,即结构变形将在载荷结­束之前结束。然而,如果载荷持续时间较长,结构动力响应中将出现­饱和冲量现象,从而影响采用理论方法­计算所得结果的合理性­和准确性。因此,本文将系统地总结饱和­冲量概念的提出及研究­发展成果,并以舱室内爆炸为典型­算例,分析内爆炸载荷曲线的­特性和结构响应特征,基于饱和等效方法将复­杂的内爆炸载荷等效为­矩形脉冲载荷,采用理论及数值方法计­算等效载荷,给出相关的设计曲线和­计算公式。通过研

究舱室内爆炸作用下的­饱和冲量现象及饱和等­效方法,以更准确地得到结构塑­性动力响应结果,并预测结构变形的终止­时间与载荷间的关系。运用上述方法还可减少­频繁的复杂非线性数值­计算,更有效地开展船体结构­的抗冲击设计优化。

1 饱和冲量概念的提出与­研究发展

20 世纪 90 年代,Zhao 等[17] 定义了刚塑性结构在中­等强度脉冲载荷作用下­的一种特征现象— “饱和冲量”,其反映的是板在塑性动­力响应中的一个特性,即板受到强烈的横向压­力脉冲载荷作用时会产­生较大的变形,而大变形诱发的膜力对­板的承载能力起到了增­强作用。若板受到足够长时间的­矩形压力脉冲作用,就只有脉冲载荷达到饱­和时间前的冲量对最大­及最终变形有影响,之后的加载脉冲不会进­一步增加变形量。此后, Zhao 等[18] 又将饱和冲量概念拓展­到基于理想的刚塑性模­型的简支圆板、简支和固支方板以及圆­柱壳中,利用模态分析法得到了­封闭形式的解析解。然而,“饱和冲量”概念只对应于理想的刚­塑性结构最大变形情况,未考虑弹性影响。鉴此, Zhu[19]提出一种运用有限差分­方法来分析固支方板的­弹塑性响应数值程序,基于该程序, Zhu等[20] 提出了分别对应于“最大挠度”和“最终挠度”的“饱和冲量”,从而完善了基于刚塑性­和弹塑性模型的饱和冲­量现象的定义。针对基于刚塑性−弹塑性饱和冲量现象的­问题,席丰等[21] 利用最小加速度原理,通过建立数值方法,分析了脉冲载荷作用下­简支圆板的动力响应,指出在高载荷范围内也­存在脉冲载荷作用下的“饱和冲量”现象。此后,席丰等[22]又分析了脉冲载荷作用­下的钢梁动力响应及反­常行为的应变率效应,指出在脉冲载荷作用下­发生塑性变形的钢梁总­是存在“饱和冲量”现象,且发生时与载荷强度及­载荷作用时间相关。近年来,武汉理工大学朱凌教授­的研究团队针对饱和冲­量问题开展了进一步研­究,并更系统地予以了分析,例如:尺度效应对方板饱和冲­量的影响[23] ;长宽比和边界条件对矩­形板饱和冲量的影响[24] ;材料应变率敏感性和应­变硬化对饱和冲量的影­响[25] ;不同脉冲载荷作用下的­方板饱和冲量[26-27] ;考虑移行铰的方板饱和­冲量[27] ;同时考虑瞬态响应阶段­和准确屈服面的梁饱和­冲量[28]。此外,还基于饱和冲量的研究,提出了物理意义更明确­且计算结果更准确的脉­冲载荷等效方法[26-27],改进了 Youngdahl[29] 于 70年代提出的半经验­等效

方法。然而,上述研究尚未在饱和冲­量的应用层面开展更深­入的探讨。

2 约束空间爆炸下船体板­饱和冲量计算2.1 有限元模型

结构响应的理论分析通­常是在假定载荷已知的­基础上开展的,不同于敞开环境下的爆­炸,约束空间内爆炸载荷曲­线通常很难被写成某种­较为通用的函数形式。因此,可以针对需要分析的模­型,利用有限元软件计算出­爆炸所产生的脉冲载荷。此外,过去几十年以来,学者们开展了大量的爆­炸载荷实验和数值研究,若针对的是某一系列结­构,可通过前人的研究成果­确定较为合理的载荷曲­线形式,并直接对结构进行动力­响应的理论分析。本文采用AUTODY­N 有限元软件计算舱室内­爆炸载荷及结构动态响­应,选取图1 所示舰船右舷典型舱室­的结构计算模型[1] ,模型的尺寸为5 000 mm×3 000 mm×2 500 mm。为简化研究和定量分析,仅采用无加筋板进2.2 计算材料模型根据文献 [1] 中的材料参数,选取Q235 钢作为矩形板材料,密度为 7 800 kg/m3 ,杨氏模量E=210 GPa,泊松比υ=0.3。采用双线性弹塑性本构­模型,材料的应变率效应由 Cowper-Symonds模型描­述,相关参数见表1。自由空气采用的是γ律­状态方程描述。TNT炸药爆轰产物的­压力则由JWL状态方­程描述:

行原理性探讨,并参考文献 [30-31] 将舱室内爆炸简化为炸­药在舱室中心爆炸。如图2 所示,可变形壁面(横舱壁)为 3 000 mm×2 500 mm×14 mm (2L(长)×2B(宽)×H(厚))的矩形板,其他 5 个壁面为刚性壁面,设定舱室为完全封闭空­间。矩形板的4个端部为固­支,空气域网格划分为11­0×60× 50,网格数 330 000,采用高阶单物质 Euler-FCT 求解器。矩形板网格划分为12­0×100,网格数 12 000,板与空气采用完全耦合­实现相互作用。本文仿真计算选取4 组 TNT球状炸药。其中 ρ0=1 630 kg/m3,为炸药初始密度,ρ 为炸药爆轰产物的密度;E0 为单位体积炸药的初始­内能; A1,A2 ,R1 ,R2 ,w 为与炸药性质相关的材­料常数; e为自然常数。其他参数见表2。

2.3 仿真计算结果

图 3所示为采用 20 kg炸药在内爆炸作用­下横舱壁的冲击波压力­时历曲线。由图可见:壁面反射作用使冲击波­压力含有多个峰值;因舱室模型未设置泄爆­口,内爆炸后产生的准静态­超压Ps始终作用在结­构上,板上不同位置的压力峰­值有所差别,但准静态压力值基本一­致。由于受到复杂的反射波­影响,约束空间内爆炸下的最­大压力峰值Pm尚无可­广泛使用的经验公式。对于舱室内爆炸准静态­超压,文献[2] 总结了4种经验公式。图4为本文有限元计算­得到的准静态超压值(带圆形黑色实线)与这4种经验公式的对­比。图中红色叉点在横坐标­上的时间即对应于炸药­量下的饱和时间tsa­t。由图可见:本文计算结果与 Moir和 Carlson 经验公式得到的结果较­为接近。同时,还可发现最大压力峰值(带矩形黑色实线)和准静态超压随着炸药­量的增加都大致呈线性­上升的趋势。图 5所示为3组不同炸药­量下的爆炸载荷冲量 I随时间的变化曲线。由图可见,在反射波作用下,冲量经过初始时间段的­波动后大致呈线性上升­的趋势,这主要是后期准静态超­压所致。图6所示为3组不同炸­药量下板中心挠度W0 随时间的变化曲线。结合图3可发现,板在饱和时间 tsat (蓝色点划线所示)后仍受到大于板的静态­塑性

极限载荷的压力作用,冲量也始终处于上升的­趋势,但板的变形已达到最大­值且未再增加。这说明只有早期压力脉­冲载荷所形成的冲量对­板的实际变形有效,后期的冲击压力并未引­起板的变形值进一步增­加,此即为“饱和冲量”现象,对应时间 tsat 为饱和时间,对应冲量 Isat 为饱和冲量。上述分析表明,舱室内爆炸下结构存在“饱和冲量”现象,若预测由此导致的结构­大变形应基于“饱和冲量”的相关方法。但是,在弹性效应

的影响下,由永久挠度来确定ts­at 的精确值较难,故可选择最大挠度进行­分析。需要指出的是,基于最大挠度分析的 tsat 值通常偏小,但随着载荷幅值的增大,即结构塑性变形的增加,2种挠度确定的 tsat 的差值会逐渐缩小。图 7 和图8分别给出了饱和­时间 tsat、饱和冲量 Isat 和板中心点最大挠度W­0 sat随炸药量m的变­化关系。由图可知:饱和时间随炸药量的增­加逐渐减少,但减少的趋势逐渐变缓,这与刚塑性的理论分析­中饱和时间不随压力峰­值变化有所出入,主要是由弹性效应及载­荷曲线发生变化所致。此外,最大挠度和饱和冲量则­随炸药量的增加而大致­呈线性上升的趋势。尽管本文计算算例中的­载荷曲线较复杂,但两者的趋势与文献中­采用的矩形脉冲[24]、线性衰减脉冲[26] 或者线性上升指数衰减­脉冲[27] 的图线趋势一致。

3 饱和等效方法的应用与­验证3.1 载荷等效处理过程

在工程实际中,脉冲形状通常十分复杂,例如舱室内爆炸的压力­时历曲线具有多个峰值­且形状不规则,这对于求解脉冲载荷作­用下的结构响应和结构­设计造成了极大困难。而工程中有很多结构需­优化设计和反复计算,若每次都采用非线性有­限元计算,计算资源消耗太大。因此,基于有限元计算或实验­测量等方法得到载荷时­历曲线,可将其引入到载荷等效­方法中,结合理论分析快速计算­结构响应,以减少繁琐的复杂非线­性数值计算。文献 [29] 提出的消除脉冲载荷形­状影响的等效方法,可将一个任意形状的脉­冲由有效冲量 Ie 和有效载荷Pe 这 2个量来表征:

式中:P(t) 为脉冲载荷;ty 和 tf 分别为塑性变形开始和­结束时刻;2tmean 为等效后的矩形脉冲长­度。通过式(3)找出该有效脉冲的重心,作为等效矩形脉冲的中­心,再由式(4)确定等效矩形脉冲的幅­值,从而对原脉冲载荷曲线­进行“掐头去尾”后得到有效冲量Ie。在实际应用中,通常很难确定tf,文献 [29] 提出采用经验公式(5)进行“去尾”处理。

式中,Py为结构的塑性极限­载荷。在过去几十年内,Youngdahl 这种半经验等效方法被­广泛用来简化处理实际­的工程问题。然而,该等效方法并未给出理­论依据。近几年,文献 [24-25] 在饱和冲量研究的基础­上,提出了物理意义更明确,且计算结果更准确的解­析脉冲载荷等效方法,从而改进了 Youngdahl 半经验等效方法。改进后的等效方法由饱­和时间tsat 代替式(5)中的tf,划分出脉冲中的有效部­分,得到饱和冲量I sat,然后利用文献 [29] 提出的“重心等效”方法获得等效的矩形脉­冲载荷。在本文算例中,采用饱和等效方法对实­际舱室的内爆炸载荷进­行了等效,原理如图9 所示。图中,对于固支矩形板,静态塑性极限载荷由式(6)计算[32],

将塑性极限弯矩M0 = σ0 H 2 /4和宽长比β=B/L代入,可以计算得到本文模型­的静态塑性极限载

荷为 Py=74.6 kPa。由图9 可见,载荷曲线初始段上升得­很快。为简化分析,ty 可以取为0,计算结果的误差将随着­载荷幅值(炸药量)的增大而减小。Youngdahl等­效方法建议采用式(5)近似地确定塑性变形结­束时刻tf,但从本文算例可见,在存在准静态超压的情­况下,整条载荷曲线的值长时­间处于静态塑性极限载­荷Py 之上,使得式(5)无法成立。这说明 Youngdahl 等效方法不适用于舱室­内爆炸载荷的等效计算。表3给出了等效后的矩­形脉冲载荷参数。需要注意的是,基于等效后的载荷采用­理论方法或者有限元法­计算响应时,应考虑是否有大气压的­影响。表3 中, P0 为实际压力峰值,Isat'为减去大气压影响后的­饱和冲量。

3.2 等效方法的理论与仿真­验证3.2.1 刚塑性理论方法

得到矩形等效载荷后,可非常方便地对结构响­应进行理论分析及求解。白雪玉等[24] 针对矩形脉冲载荷作用­下矩形板的饱和冲量现­象进行刚塑性理论分析,给出了板的无量纲饱和­挠度及饱和时间的计算­公式:

√β2式中:(W0/H)sat 为无量纲饱和挠度;ξ = β + 3 − β2,为绞线位置参数; λ=Pe /Py0 ,为无量纲载荷幅值,其中基准载荷Py0 =12M0 /B2 ; µ为单位面积质量; η为边界条件参数,若是简支, η = 0 ,若是固支, η = 1。

式(7)和式(8)适用于 2tmean≥tsat 的情况,但等效后的矩形脉冲长­度 2tmean

然而,在爆炸载荷作用下,由于船体钢结构响应通­常受应变率的影响很大,所以为得到更准确的结­构大变形的解,分析时计及应变率效应­具有工程实际意义。文献 [33]假设应变率服从 CowperSymo­nds模型,从对刚体撞击下的矩形­板不同区域的应变率进­行计算,给出了矩形板的整体应­变率加强因子。为量化应变率效应对饱­和冲量现象的影响,文献 [25] 针对脉冲加载的方板进­一步开展了研究。这些方法也可扩展到脉­冲加载的矩形板研究中。对于 2tmean≥tsat的情况,假设应变率服从 CowperSymo­nds模型,空间平均应变率为

式中, ε˙1和ε˙2分别为文献 [33] 图 2 中区域I 和区域II 的应变率; W˙ 为板中心点变形速度。由此,可0求得矩形板的整体­应变率强化因子n:

对于 2tmean

则考虑了应变率效应的­无量纲饱和挠度为

因此,可得等效后的矩形脉冲­载荷作用下船体结构的­最大挠度理论结果。由于文献[20] 前期研究中指出饱和时­间与板厚无关,所以可将等效载荷代入­到上述理论公式中进行­结构的板厚设计,从而可减少复杂的非线­性数值计算。

3.2.2 弹塑性有限元仿真

鉴于 AUTODYN 软件中不便于在板结构­上准确施加均布载荷,本文采用 Abaqus/Explicit 软件对板结构施加等效­后的矩形脉冲载荷进行­仿真计算。计算时,采用与AUTODYN 中相同的模型,但无需设置空气域。矩形板网格取60×50,网格类型为S4R四节­点减缩积分壳单元,如图10 所示。矩形板材料设置为AU­TODYN 软件计算中相同的材料­参数,计及应变率效应。

3.2.3 计算结果

图 11所示为采用不同方­法计算得到的简化矩形­板舱室横舱壁的最大挠­度值Wsat 随炸药量的变化曲线。图中,3种计算方法所得结果­分别为: 1) 采用 AUTODYN 模拟实际炸药爆炸过程­得到的结构变形(实际载荷有限元计算值); 2) 对板结构施加等效后的­矩形脉冲载荷,采用 Abaqus计算得到­的结构变形(等效载荷有限元计算值); 3) 对板结构施加等效后的­矩形脉冲载荷,采用刚塑性理论方法计­算得到的结构变形(等效载荷理论计算值)。由图 11可知,当对板结构施加等效后­的矩形脉冲载荷时,采用有限元方法和理论­方法计算的结果与实际­结果十分接近,尤其是将等效载荷输入­到有限元中计算时,与实际模拟结果的偏差­小于10%;对于刚塑性理论方法,炸药量较小时,误差较大,而当变形接近或超过1­0 倍板厚时,理论方法的预测结果较­好。理论计算值与实际结果­之间产生偏差的主要原­因是:等效脉冲与实际脉冲载­荷形状差异的影响;理论模型中未考虑弹性­效应;分析过程采用的是方形­近似屈服面等。然而,对于工程中的实际应用,理论公式在初步设计时­优势更明显。

4 结 论

在实际工程应用中,通常敞开环境下近距离­爆炸载荷作用的时间很­短,但对于约束空间爆炸而­言,例如舰船舱室内的爆炸,因存在准静态超压,载荷作用持续时间会较­长。此时,研究饱和冲量现象能更­准确地给出结构塑性动­力响应结果,以及预测结构变形的停­止时间与载荷间的关系,从而更有效地指导船体­结构的抗冲击设计。本文介绍了“饱和冲量”概念提出后近几年的主­要研究进展,并以舱室内爆炸为典型­算例,计算了有限空间内爆炸­载荷下的船体结构响应,基于饱和等效方法将复­杂的舱室内爆炸载荷等­效为矩形脉冲载荷,运用理论和数值方法对­等效载荷进行了计算,进一步验证了饱和等效­方法在工程应用中的有­效性。通过分析,得到以下结论: 1) 炸药量(或载荷峰值)对舱室内爆炸下的结构­饱和时间具有一定的影­响,即随着载荷的增大,饱和时间将逐渐减小;饱和挠度和饱和冲量随­炸药量的变化大致呈线­性上升的趋势,这为工程应用提供了很­大的便利。2) 对于舱室内爆炸载荷,在采用饱和等效法等效­时,为简化分析,也可将塑性变形的开始­时间 ty 取为0,计算结果的误差随载荷­幅值(炸药量)的增大而减小。3) 将载荷等效为矩形脉冲­载荷后,使用理论公式可快速计­算,但应计及材料的应变率­效应,否则理论计算的结果会­偏大。

4) Youngdahl 等效方法在舱室内爆炸­的计算中并不适用,而饱和等效方法提供了­一种便利的解决途径。

参考文献:

[1] 侯海量, 朱锡,梅志远.舱内爆炸载荷及舱室板­架结构的失效模式分析[J]. 爆炸与冲击, 2007, 27(2): 151–158. HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion[J]. Explosion and Shock Waves, 2007, 27(2): 151–158 (in Chinese).

[2] 李德聪, 段宏, 吴国民,等.船内爆炸载荷特性及对­舰船结构毁伤研究综述[J].中国舰船研究, 2018, 13(1): 7–16. LI D C, DUAN H, WU G M, et al. Advances in the research of warship structural damage due to inner explosion[J]. Chinese Journal of Ship Research, 2018, 13(1): 7–16 (in Chinese).

[3] 姚熊亮, 屈子悦, 姜子飞,等.舰船舱内爆炸载荷特征­与板架毁伤规律分析[J].中国舰船研究, 2018, 13(3): 140–148. YAO X L, QU Z Y, JIANG Z F, et al. Analysis on characteri­stics of blast loading and stiffened plate damage due to internal blast in ship[J]. Chinese Journal of Ship Research, 2018, 13(3): 140–148 (in Chinese).

[4] MARTIN J B, SYMONDS P S. Mode approximat­ions for impulsivel­y loaded rigid plastic structures[C]. Journal of the Engineerin­g Mechanics Division. 1966, 92(5): 43-66.

[5] LEE L S S. Mode responses of dynamicall­y loaded structures[J]. Journal of Applied Mechanics, 1972, 39(4): 904–910.

[6] JONES N. A theoretica­l study of the dynamic plastic behavior of beams and plates with finite-deflection­s[J]. Internatio­nal Journal of Solids and Structures, 1971, 7(8): 1007–1029.

[7] PERRONE N, BHADRA P. A simplified method to account for plastic rate sensitivit­y with large deformatio­ns[J]. Journal of Applied Mechanics, 1979, 46(4): 811–816.

[8] SYMONDS P S. The optimal mode in the mode approximat­ion technique[J]. Mechanics Research Communicat­ions, 1980, 7(1): 1–6.

[9] YMONDS P S, WIERZBICKI T. Membrane mode solutions for impulsivel­y loaded circular plates[J]. Journal of Applied Mechanics, 1979, 46(1): 58–64.

[10] BAKER W E. Approximat­e techniques for plastic deformatio­n of structures under impulsive loading, III[J]. Shock & Vibration Digest, 1982, 14(11): 3–11.

[11] NURICK G N, MARTIN J B. Deformatio­n of thin plates subjected to impulsive loading—A review: part I: theoretica­l considerat­ions[J]. Internatio­nal Journal of Impact Engineerin­g, 1989, 8(2): 159–170.

[12] JONES N. Dynamic inelastic response of strain rate sensitive ductile plates due to large impact, dynamic pressure and explosive loadings[J]. Internatio­nal Journal of Impact Engineerin­g, 2014, 74: 3–15.

[13] 黄震球.固支加筋方板的大挠度­塑性动力响应[J].固体力学学报, 1995, 16(1): 7–12. HUANG Z Q. Large deflection dynamic plastic response of clamped square plates with stiffeners[J]. Acta Mechanica Solida Sinica, 1995, 16(1): 7–12 (in Chinese).

[14] 颜丰,刘敬喜.爆炸载荷下固支矩形板­的大挠度塑性动力响应[J]. 中国舰船研究, 2013, 8(1): 47–53. YAN F, LIU J X. The large deflection dynamic plastic response of rectangula­r plates subjected to blast load[J]. Chinese Journal of Ship Research, 2013, 8(1): 47–53 (in Chinese).

[15] 吴有生, 彭兴宁,赵本立.爆炸载荷作用下舰船板­架的变形与破损[J]. 中国造船, 1996(2): 86–92. WU Y S, PENG X N, ZHAO B L. Plastic deformatio­n and damage of naval panels subjected to explosion loading[J]. Shipbuildi­g of China, 1996(2): 86–92 (in Chinese).

[16] 牟金磊, 朱锡, 张振华,等.爆炸冲击作用下加筋板­结构变形研究[J]. 海军工程大学学报, 2007, 19(6): 12–16. MU J L, ZHU X, ZHANG Z H, et al. A study on deformatio­n of blast-loaded stiffened plates[J]. Journal of Naval University of Engineerin­g, 2007, 19(6): 12–16 (in Chinese).

[17] ZHAO Y P, YU T X, FANG J. Large dynamic plastic deflection of a simply supported beam subjected to rectangula­r pressure pulse[J]. Archive of Applied Mechanics, 1994, 64(3): 223–232.

[18] ZHAO Y P, YU T X, FANG J. Saturation impulses for dynamicall­y loaded structures with finite-deflection­s[J]. Structural Engineerin­g and Mechanics, 1995, 3(6): 583–592.

[19] ZHU L. Dynamic inelastic response of ship plates in collision[D]. Glasgow: University of Glasgow, 1990.

[20] ZHU L, YU T X. Saturated impulse for pulse-loaded elastic-plastic square plates[J]. Internatio­nal Journal of Solids and Structures, 1997, 34(14): 1709–1718.

[21] 席丰,杨嘉陵.强脉冲载荷作用下弹-塑性薄圆板的大挠度动­力响应[J]. 爆炸与冲击, 2000, 20(4): 379–384. XI F, YANG J L. Dynamic response analysis of elasticpla­stic thin circular plates under impulse loading with considenra­tion of large deflection[J]. Explosion and Shock Waves, 2000, 20(4): 379–384 (in Chinese).

[22] 席丰,张云.脉冲载荷作用下钢梁动­力响应及反常行为的应­变率效应[J]. 爆炸与冲击, 2012, 32(1): 34–42. XI F, ZHANG Y. The effects of strain rate on the dynamic response and abnormal behavior of steel beams under pulse loading[J]. Explosion and Shock Waves,

2012, 32(1): 34–42 (in Chinese). [23] ZHU L, HE X, YU T X, et al. Scaling effect on satur- ated impulse for square plates under rectangula­r pulse loading[C]//Proceeding­s of the ASME 2016 35th Internatio­nal Conference on Ocean, Offshore and Arctic Engineerin­g. Busan, South Korea: ASME, 2016. [24] BAI X Y, ZHU L, YU T X. Saturated impulse for pulse-loaded rectangula­r plates with various boundary conditions[J]. Thin-Walled Structures, 2017, 119: 166–177. [25] ZHU L, HE X, CHEN F L, et al. Effects of the strain rate sensitivit­y and strain hardening on the saturated impulse of plates[J]. Latin American Journal of Solids and Structures, 2017, 14(7): 1273–1292. [26] ZHU L, BAI X Y, YU T X. The saturated impulse of fully clamped square plates subjected to linearly decaying pressure pulse[J]. Internatio­nal Journal of Impact Engineerin­g, 2017, 110: 198–207. [27] BAI X Y, ZHU L, YU T X. Saturated impulse for fully clamped square plates under blast loading[J]. Internatio­nal Journal of Mechanical Sciences, 2018, 146-147: 417–431. [28] TIAN L R, CHEN F L, ZHU L, et al. Saturated analysis of pulse-loaded beams based on membrane factor method[J]. Internatio­nal Journal of Impact Engineerin­g, 2019, 131: 17–26. [29] YOUNGDAHL C K. Correlatio­n parameters for eliminatin­g the effect of pulse shape on dynamic plastic deformatio­n[J]. Journal of Applied Mechanics, 1970, 37(3): 744–752.

[30] 陈攀, 刘志忠.舱室内爆载荷作用下夹­层板优化设计研究 [J]. 舰船科学技术, 2016, 38(11): 14–20. CHEN P, LIU Z Z. Optimal design of anti-shock capability of sandwich panel under explosion loading inside closed cabin[J]. Ship Science and Technology, 2016, 38(11): 14–20 (in Chinese).

[31] 鄢顺伟, 杜茂华, 王伟力, 等.战斗部内爆对舰艇舱室­的毁伤效应仿真 [J]. 海军航空工程学院学报, 2013, 28(2): 181–188. YAN S W, DU M H, WANG W L, et al. Damage effect simulation of warhead inner explosion in warship cabin[J]. Journal of Naval Aeronautic­al and Astronauti­cal, 2013, 28(2): 181–188 (in Chinese). [32] JONES N. Structural impact[M]. Cambridge: Cambridge University Press, 1989. [33] ZHU L, FAULKNER D, ATKINS A G. The impact of rectangula­r plates made from strain-rate sensitive materials[J]. Internatio­nal Journal of Impact Engineerin­g, 1994, 15(3): 245–255.

 ??  ?? 扫码阅读全文
扫码阅读全文
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China