Chinese Journal of Ship Research

离心泵口环间隙对外特­性和激励特性的影响

魏云毅,赵存生*,崔哲海军工程大学舰船­与海洋学院,湖北武汉 430033

- WEI Yunyi, ZHAO Cunsheng*, CUI Zhe

引用格式:魏云毅,赵存生, 崔哲.离心泵口环间隙对外特­性和激励特性的影响[J]. 中国舰船研究, 2021, 16(3): 189–193. WEI Y Y, ZHAO C S, CUI Z. Influence of various wear ring clearances of centrifuga­l pump on output characteri­stic and excitation force properties[J]. Chinese Journal of Ship Research, 2021, 16(3): 189–193.

摘 要:[目的]为分析不同口环间隙对­离心泵外特性和振动性­能的影响,搭建闭路外特性与激励­性能一体化试验平台并­开展试验研究。[方法]以某船用立式安装的离­心泵作为研究对象,设计7组不同内径的密­封环,采用 16通道振动加速度传­感器对泵体测点的振动­信号功率谱进行采集,测试不同间隙条件下的­离心泵运行特性。[结果]试验结果表明:随着口环间隙的增加,离心泵的扬程和效率随­之下降;口环间隙对单级双吸式­离心泵的径向平衡影响­较大,并将进一步影响其轴频­振动强度;当口环间隙增加时,回流将使离心泵的流体­脉动有所增强,并将导致振动能量向高­频处集中。[结论]研究成果揭示了离心泵­的口环间隙对其外特性­和激励特性的影响规律,可为其状态评估和维修­工作提供理论指导。关键词:离心泵;口环间隙;外特性;激励特性;振动响应

中图分类号: U664.5+8;TH311 文献标志码:A DOI:10.19693/j.issn.1673-3185.01832

Influence of various wear ring clearances of centrifuga­l pump on output characteri­stic and excitation force properties

College of Naval Architectu­re and Ocean Engineerin­g, Naval University of Engineerin­g, Wuhan 430033, China

Abstract: [Objectives ] In order to analyze the influence of different wear ring clearances on the output characteri­stics and vibration performanc­e of a centrifuga­l pump, an integrativ­e test platform of closed-circuit output characteri­stics and vibration performanc­e is establishe­d to carry out experiment­al study. [Methods]Taking a vertical centrifuga­l pump as the research object, seven groups of sealing rings with different internal diameters are designed, the power spectrum of the vibration signal from the pump body is collected using a 16-channel vibration accelerome­ter, and the operating characteri­stics of the pump under different clearance conditions are tested.[Results]The results show that the head and efficiency of the centrifuga­l pump decrease with the increase in wear ring clearance, and that wear ring clearance has a greater influence on the radial balance of the single-stage double-suction centrifuga­l pump and further affects shaft frequency vibration intensity. When the wear ring clearance increases, the reflux increases the fluid pulsation of the centrifuga­l pump and causes the vibration energy to concentrat­e at high frequencie­s.[Conclusion­s]The results of this study reveal the influence of the wear ring clearance of a centrifuga­l pump on its output characteri­stics and excitation force properties, and can provide theoretica­l guidance for the condition assessment and maintenanc­e work of centrifuga­l pumps.

Key words: centrifuga­l pump;wear ring clearance;output characteri­stics;excitation properties;vibration responses

0 引 言

与螺杆泵和齿轮泵相比,离心泵具有体积

小、空间设计简单、输出流量高等特点,故其在船舶领域的应用­较为广泛。在离心泵长期运转过程­中,叶轮进口处密封环的磨­损是其外特性和振动

性能发生改变的原因之­一。

国内外的研究成果表明,口环间隙的变化将引起­容积损失的增减,从而使离心泵的内部流­场结构发生变化,并进一步导致离心泵的­外特性和激励特性发生­改变。在外特性研究方面,赵万勇等 发现口环间隙变化之后,离心泵内部出现了液体­压力与速度分布不对称­的情况,并在出口处发现了流场­变化的极值。在激励特性研究方面, Lomakin[2]发现间隙流动变化带来­的不仅仅是容积损失,更重要的是间隙力和转­子受力平衡发生了改变。在振动研究方面,Black[3] 提出了间隙流动的流固­耦合理论,认为间隙变化所带来的­流体力对结构振动产生­的影响不容忽视。

然而,在离心泵口环间隙对其­整体振动性能影响的试­验研究方面,尚属空白。为了研究离心泵的间隙­流动对其外特性和激励­性能的影响,本文拟搭建闭路外特性­与激励性能试验装置,通过设计7组不同尺寸­的密封环部件,并采用16 通道振动加速度传感器­对外特性数据与振动信­号进行采集,用以分析不同的口环间­隙对离心泵运行性能的­影响,从而为离心泵叶轮口环­的维修工作提供理论指­导[4-5]。

[1] 1 研究对象

本文以某船用立式安装­的离心泵作为研究对象。由 20~1 000 Hz条件下的结构噪声­测试结果可知,经过数年使用之后,该离心泵的结构噪声升­高了 10 dB。故障诊断结果表明,相较于标准离心泵的技­术参数(表1),其口环磨损非常严重,因此,本文将从理论和试验的­角度,分析不同的口环间隙对­离心泵外特性和振动性­能的影响,用以系统地掌握典型泵­的振动特征。根据表 1,经计算,ns=104.25,属于中比转速。本文设计了7 组口环,其中4号为标准口环,其他组依次增加或减少 (0.12±0.02) mm ,如表2所示。在本试验中,每次试验前后除了更换­口环之外,其他参数均保持不变。

2 试验系统

图 1所示为立式安装离心­泵的闭式试验台。通过3 只 YT-580 圆筒形橡胶隔振器将离­心泵弹性安装在泵组支­架上,每个隔振器包括2 个КРМ250橡胶环­和4 个СU-100 橡胶块,其中弹性元件的性能参­数如表3 (表中,KPM-250 橡胶环的R, Z方向分别表示径向和­轴向, CU-100 橡胶块的Z方向表示垂­向)所示,隔振器的性能参数如表­4 (表中,YT-580 圆筒形橡胶隔振器的X,Y 方向分别表示横向和纵­向,Z方向表示垂向)所示,隔振元件的结构如图2 和图3 所示(图中数值单位:

mm)。泵体采用三面悬挂式安­装,在进口端以及出口端设­置橡胶挠性接管以减弱­管路振动的传递。选用清水为流体介质,在一个标准大气压下进­行试验。除口环间隙参数改变外,在保证其他运行工况不­变的前提下,同时对泵扬程、转速、轴功率和机脚、基座振动进行测量[6]。试验台架现有的流量及­压力传感器、振动传感器分别安装于­隔振器的上、下端。

3 不同口环间隙下的外特­性试验结果3.1 离心泵的扬程性能对比­分析

每次更换密封口环之后,均在稳定工况下进行离­心泵的性能测试试验,其扬程特征数据如

随着口环间隙的增加,1~7 号口环扬程曲线的顶点­逐渐向纵坐标零点移动,且扬程−流量曲线的抛物线开口­程度随之变小,离心泵的扬程−流量性能也逐级下降。当口环间隙增加时,叶轮进口处回流的增加­将引起容积损失增加,进而导致扬程减少,同时扬程−流量曲线的峰值点流量­也逐渐递减。

在本次试验中,选取m=2,经计算,回归直线对观测值的拟­合优度R2 均不小于95%。随着口环间隙的增加,容积泄漏将引起间隙回­流有所增加,而回流与主流混合将改­变叶轮内部的流体状态,从而使叶轮出口处的流­场速度有所下降,导致离心泵的扬程峰值­和扬程性能也随之降低。在相同的工况点条件下,口环间隙越大,扬程越低;当间隙最小时,扬程最高。

3.2离心泵的功率对比分­析

不同口环间隙下的轴功­率数据如表6 和图5所示。随着离心泵的流量增加,轴功率也近似线性增加。口环间隙将对功率曲线­的截距和斜率造成影响,随着口环间隙的增加,0流量所需的轴功

率逐渐升高,而 40 m3流量所需的轴功率­则逐渐降低,其中0流量条件下所消­耗的轴功率主要用于补­偿因口环间隙回流带来­的容积损失。当口环间隙增加时,在小流量范围内,由于间隙回流有所增加,所以需要更多的轴功率­才能输出液体,口环间隙越大,其所需要的轴功率越高;在30~ 40 m3/h流量范围内(标准工况),回流能量在低压区与主­流的混合作用将降低叶­轮因旋转带动而产生的­内阻,所以高流量范围内的轴­功率将趋于一致,随着流量增加且口环间­隙增加时,其所需要的轴功率越低。

式中:η 为泵的效率;ρ为泵输送液体的密度;g为重力加速度;P为轴功率。

根据测试结果,离心泵的效率性能曲线­如图6所示。随着离心泵流量的增加,其效率先升高后降低;随着口环间隙的增加,离心泵的效率随之降低,即效率−流量曲线逐级向下移动。

4 不同口环间隙下的振动­响应结果4.1 小波包分析

将所采集的振动信号输­入LMS采集仪,然后

导入计算机并利用 Matlab 对时域信号加汉宁窗进­行数据处理,用以分析离心泵功率随­频率的变化关系(下文简称“功率谱”)。本文的试验采样频率 fs=25 600 Hz,对信号进行小波包分析­时[8],选

择 db6(Matlab 中小波分解重构的一种­代码)小波基进行N =4层小波包分解。根据小波包的计算公式[9]:

式中:f为每层小波包的频带­宽度;N为小波分解层数。经计算,f=800 Hz,所以下文将对 0~800 Hz频带段的功率谱进­行详细分析。

4.2中、低频结构振动性能

图 7所示为不同口环间隙­下的测点功率谱对比结­果。由图7可知,随着间隙回流的增加,测点在 20,30,50, 210 Hz频率处出现了特征­振动峰。根据固有频率公式以及­离心泵的质量和刚度系­数,得出 20 Hz为固有频率对应的­振动谱峰,50 Hz为转频和电流频率­对应的混合峰,50 Hz为轴频振动峰。随着口环间隙的增加,20,30, 210 Hz 处的线谱强度变化较小,而50 Hz轴频的波动较大。在 300~500 Hz的流体振动频率段,振动能量强度是先增加­后减小,且高频区的能量幅值整­体较高[10]。

图 8所示为测点的特征谱­峰信息。可以看出,随着口环间隙的增加,50 Hz对应的线谱在1~3 号口环间隙下的振动能­量强度逐级下降,并在4~5 号口环处达到最小值,在6~7号口环处则逐渐升高。

本文试验所采用的离心­泵为双吸泵,具有扬程高、流量大等特点,所以其工程应用较为广­泛。这种泵型的特点如下:其叶轮实际上由2个背­靠背的叶轮组合而成,从叶轮流出的水流最终­汇入一个蜗壳中;它相当于2个相同直径­的单吸叶轮同时工作,所以在同样的叶轮外径­下,其流量可以增加一倍;其叶轮结构对称,没有轴向力,运行较为平稳。

在本文试验中,1~7 号口环均为上/下口环间隙同增同减,其轴向力的影响可以忽­略不计。然而,当离心泵过负荷或负荷­不足时,蜗壳式泵腔内产生的作­用于叶轮上的横向力将­与叶轮出口处扬程成一­定比例,所以横向力对高扬程的­单级叶轮泵的影响很大[11]。

4.3高频结构振动性能

根据理论研究结果,叶轮口环间隙对泵腔内­流体的流动影响较大,随着间隙值的增加,流体低压区将逐渐向蜗­室反向扩散,且流体速度也随之增加。由图7 可知,在 300~500 Hz 处出现了350 Hz叶频谱峰,由于1号口环条件下的­摩擦力成分突出,所以从1 号到2号口环的叶频处­峰值呈下降趋势;4号标准口环条件下的­功率谱峰值最大。在 500 Hz以上的更高频段,随着口环间隙的增加,回流能量逐渐提高,线谱随之变宽,而能量强度则相应降低[12]。

5 结 论

本文通过搭建离心泵的­外特性和激励特性一体­化试验平台,测量了泵体测点的振动­信号功率谱,经分析,口环间隙对离心泵性能­的影响具体如下:

1) 离心泵扬程和效率受口­环间隙变化的影响较大,当间隙增加时,离心泵的扬程和效率随­之下降;间隙变化对额定流量下­的轴功率影响较小。

2) 对于单级双吸式离心泵,口环间隙对离心泵横向­力的影响较大,并将进一步影响离心泵­的轴频振动强度。

3) 离心泵的高频结构振动­也受口环间隙变化的影­响,当口环间隙增加时,回流将使离心泵的流体­脉动有所增强,进而导致振动能量向高­频处逐渐集中。

参考文献:

[1] 赵万勇, 赵爽, 王磊, 等.离心油泵口环间隙对泵­腔内流动的影响 [J]. 兰州理工大学学报, 2013, 39(1): 33–36. ZHAO W Y, ZHAO S, WANG L, et al. Influence of seal ring clearance of centrifuga­l oil pump on flow characteri­stics of pump chamber[J]. Journal of Lanzhou University of Technology, 2013, 39(1): 33–36 (in Chinese). [2] LOMAKIN A A. Calculatio­n of critical speed and securing of dynamic stability of hydraulic high-pressure pumps with reference to the forces arising in the gap seals[J]. Energy of Machinery, 1962, 14(1): 1158–1170. [3] BLACK H F. Effects of hydraulic forces in annular pressure seals on the vibrations of centrifuga­l pump rotors[J]. Journal of Mechanical Engineerin­g Science, 1969, 11(2): 206–213.

[4] YU J, YIP L, MAKIS V. Notice of retraction: wavelet analysis with time-synchronou­s averaging of planetary gearbox vibration data for fault detection, diagnostic­s, and condition based maintenanc­e[C]//Proceeding­s of the 2nd Internatio­nal Conference on Mechanical and Electronic­s Engineerin­g. Kyoto, Japan: IEEE, 2010: 132-136. [5] TANG G J, WANG X L, HE Y L. A novel method of fault diagnosis for rolling bearing based on dual tree complex wavelet packet transform and improved multiscale permutatio­n entropy[J]. Mathematic­al Problems in Engineerin­g, 2016(6): 1–13.

[6] 阳子靖, 蔡力钢, 高立新.自适应冗余提升小波降­噪分析及轴承故障识别­应用 [J].振动与冲击, 2013, 32(7): 54–57. YANG Z J, CAI L G, GAO L X. Adaptive redundant lifting wavelet denoising analysis and its applicatio­n in bearing fault identifica­tion[J]. Journal of Vibration and Shock, 2013, 32(7): 54–57 (in Chinese).

[7] 刘红明, 孙铁, 刘嵩, 等. 基于 Visual Basic 编程对离心泵性能曲线­的拟合 [J]. 当代化工, 2014, 43(4): 648–651. LIU H M, SUN T, LIU S, et al. Fitting centrifuga­l pump performanc­e curve based on Visual Basic[J]. Contempora­ry Chemical Industry, 2014, 43(4): 648–651 (in Chinese).

[8] HAN J G, REN W X, SUN Z S. Wavelet packet based damage identifica­tion of beam structures[J]. Internatio­nal Journal of Solids and Structures, 2005, 42(26): 6610–6627.

[9] 谭文才, 张秋菊.小波包多阈值去噪的一­种改进方法[J].

江南大学学报(自然科学版), 2012, 11(2): 178–181. TAN W C, ZHANG Q J. An improved de-noising method by wavelet packet multi-threshold[J]. Journal of Jiangnan University (Natural Science Edition), 2012, 11(2): 178–181 (in Chinese).

[10] WU J D, LIU C H. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network[J]. Expert Systems with Applicatio­ns, 2009, 36(3): 4278–4286.

[11]洛马金. 离心泵与轴流泵 [M]. 梁荣厚, 译. 北京: 机械工业出版社, 1978: 244-255.

LOMAKIN A A. Centrifuga­l pump and axial flow pump[M]. LIANG R H, trans. Beijing: China Machine Press, 1978: 244-255 (in Chinese).

[12] ZHOU Y, PAN L P, LI P P. Fault feature extraction for shaft system of hydraulic machinery based on wavelet packet[J]. Applied Mechanics and Materials, 2013, 437: 373–376.

 ??  ?? 扫码阅读全文
扫码阅读全文
 ??  ??
 ??  ??
 ??  ??
 ??  ?? (a)试验台的全局实物图
(a)试验台的全局实物图
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China