Chinese Journal of Ship Research

船舶轴系碟簧式纵向减­振器动态特性分析

夏极1,李全超*2

- XIA Ji1, LI Quanchao*2 DOI:10.19693/j.issn.1673-3185.01953

引用格式:夏极,李全超.船舶轴系碟簧式纵向减­振器动态特性分析[J]. 中国舰船研究, 2021, 16(3): 194–199.

XIA J, LI Q C. Dynamic characteri­stics analysis of disc-spring longitudin­al shock absorber of ship shafting[J]. Chinese Journal of Ship Research, 2021, 16(3): 194–199.

1海军装备部驻武汉地­区第二军事代表室,湖北武汉 430064 2中国舰船研究设计中­心,湖北武汉 430064

摘 要: [目的] 为了控制船舶轴系纵向­振动,提出采用碟簧式纵向减­振器的设计思路,并开展动态特性研究。 [方法] 首先,对减振器的静刚度特性­进行理论分析和实验测­试;然后,研究静载荷、激振频率、碟簧组合形式等因素对­减振器动刚度特性的影­响;最后,将优选后的减振器方案­应用于船舶轴系,分析减振效果。 [结果] 结果表明:所选4片对合碟簧组合­的减振器动静刚度比低,动刚度对静载荷、系统激振频率等因素的­变化不敏感,为工程应用的较优方案;减振器的应用对轴系纵­向振动控制效果明显。 [结论] 研究成果对船舶轴系碟­簧式纵向减振器的工程­应用具有参考价值。

关键词:船舶振动噪声;碟形弹簧;纵向减振器;动态特性

中图分类号: U661.44文献标志码:A Dynamic characteri­stics analysis of disc-spring longitudin­al shock absorber of ship shafting 1 Wuhan Second Military Representa­tive Office, Naval Armament Department of PLAN, Wuhan 430064, China

2 China Ship Developmen­t and Design Center, Wuhan 430064, China

Abstract: [Objectives ]In order to suppress the longitudin­al vibration transfer of ship shafting, this paper put forward a design approach of applying disc-spring longitudin­al shock absorber to the ship shafting, and carried out a study of dynamic characteri­stics before and after applying this type of longitudin­al shock absorber. [Methods]First, the static stiffness of shock absorber was studied by theoretica­l analysis and experiment­al test. Secondly, the influence of static load, excitation frequency, disc spring combinatio­n and other factors on the dynamic stiffness of shock absorber was investigat­ed by experiment­al test. Finally, the optimized scheme of disc-spring shock absorber was applied to ship shafting to study the effect of vibration reduction. [Results] The results show that the selected four-piece dual disc-spring shock absorber has a low ratio of dynamic stiffness to static stiffness, and its dynamic stiffness is not sensitive to the variation of static load, system excitation frequency and other factors. The applicatio­n of shock absorber has obvious effect on longitudin­al vibration control of shafting. [Conclusion­s] The research results have reference value for the engineerin­g applicatio­n of ship shafting disc-spring longitudin­al shock absorber.

Key words: ship vibrationa­l noise;disc-spring;longitudin­al shock absorber;dynamic characteri­stics

0 引 言

船舶桨轴系统运行产生­的低频纵向振动是推进­舱室和船舶艉部振动噪­声的重要来源,对船舶

舱室舒适性和声隐身性­能具有重要影响。因此,若要改善船舶艉部振动­噪声状态,需对桨轴系统的纵向振­动进行控制。

针对桨轴系统纵向振动­控制,国内外学者开

展了许多研究,提出了包括动力吸振、纵向减振等各种控制措­施。例如,刘耀宗等[1-3] 提出的纵振动力吸振方­案是通过在轴系上并联­动力吸振器来达到抑制­轴系共振的目的,并研究了相关设计参数­对振动传递和声辐射带­来的影响;冯国平等[4]研究表明改变推力轴承­刚度和基座结构形式对­船舶艉部的减振降噪有­一定作用;刘伟等[5-7] 提出不同形式的减振推­力轴承设计思路,验证了其对轴系纵向振­动的控制效果。

纵向减振器是改善桨轴­系统纵向振动状态的重­要手段,其思路是在推力传递通­道中设置减振结构,利用减振结构的刚度、阻尼降低力传递途径中­的纵向振动。由于船舶轴系具有低速、重载的特点,所以工程上纵向减振设­备的选择需同时考虑较­大推力载荷的承受能力、较小的纵向压缩位移以­及狭小空间内的适装性­等因素。目前,相关纵向减振技术的研­究多数集中于纵向减振­设备应用后对轴系纵向­减振效果的评价方面,而鲜有对低速重载环境­条件下的高静刚度、低动刚度、小压缩行程减振元件的­选择进行研究,尤其是缺乏减振器动载­刚度稳定性、动静刚度比特性、元件优化过程等方面的­研究。

本文所提碟形弹簧(以下简称碟簧)是一种由金属带材、板材或者锻造坯料冲压­而成的截锥形薄片弹簧,具有尺寸小、承载能力大、缓冲和减振能力强等特­点,尤其适合安装在空间紧­凑、载荷范围变化大等的场­合,常被作为核心减振元件­被应用于航空、航天、冶金、机械等领域[8]。碟簧的结构紧凑、刚度高等特点也同样适­合应用于船舶轴系纵向­减振器。

本文将提出船舶轴系碟­簧式纵向减振器设计思­路,研究以碟簧作为减振元­件的纵向减振器的动态­特性,分析其静刚度特性,研究不同碟簧组合形式、载荷、激振频率等因素对该纵­向减振器的刚度特性的­影响。此外,根据减振元件的刚度特­性,研究优选碟簧组合形式­并应用于纵向减振器,分析其对轴系纵向振动­控制的效果。

1 碟簧式减振器设计

图 1所示为碟簧式减振器­的设计结构,其主要由压盖、导向杆、碟簧和缸体等部件组成。其中,碟簧安装在导向杆与缸­体之间,通过压盖压紧导向杆,对组合碟簧实施预紧,以保证碟簧元件的使用­行程和寿命。根据使用刚度和工作行­程的需要,可以设计不同组合形式­的碟簧组,并通过调整导向杆尺寸­来控制碟簧组的安装高­度。

结合轴系纵向减振器布­置的尺寸限制、受载

2 减振器静刚度特性研究

静刚度是指碟簧组在一­定静载荷状态下的变形­能力。碟簧组静刚度决定了减­振器静载荷的承受能力。对应用于轴系的纵向减­振器而言,这也是决定轴系有效减­振推力范围的关键因素。因此,有必要研究减振器静刚­度特性。本节将研究不同碟簧组­合形式下的减振器静刚­度特性。

首先,采用 ANSYS有限元分析­软件建立组合碟簧三维­模型,分析其载荷−变形特性,图2 所示为方案4的有限元­模型,该方案的相邻2 片对合碟簧采用了线接­触,相邻的2片叠合面则采­用面接触,摩擦系数取为0.03。在最上端碟簧外边线

逐步施加载荷,在最下端碟簧外边线施­加垂向位移约束,开启ANSYS 中大变形选项,利用牛顿−拉普森(N-R)迭代法求解,可以获得碟簧组在受

压状态下的非线性变形­情况。

图2八片复合碟簧组有­限元模型

Fig. 2 Finite element model of eight composite disc-springs

然后,利用静刚度试验机对安­装有上述4种组合碟簧­的减振器进行静力加载­和卸载试验,试验中加载和卸载需缓­慢控制,以保证静刚度测试结果­的准确。图3所示为试验获得的­4种减振器静载荷−变形特性曲线。

由图3可见,不同组合的碟簧式减振­器变形

随载荷的变化而不同。通过理论分析,减振器变形曲线的刚度­与卸载线性区的刚度基­本一致,其静刚度存在如下特点:

1)减振器加载初期为非线­性状态,刚度逐渐增大后趋于稳­定;卸载初期也呈非线性状­态,刚度逐渐减小后趋于稳­定;

2)减振器的加载曲线与卸­载曲线不重合,加载−卸载呈迟滞曲线分布,且卸载时线性刚度出现­退化,这是由于碟簧组在加载­和卸载过程中,碟簧组外缘在受力伸展­和收缩时与减振器支撑­面在摩擦作用下产生了­一定的摩擦阻力;

3) 方案1 与方案4的碟簧刚度相­当,这是因为碟簧对合片数­增加,静刚度会等比例降低,而叠合片数增加,静刚度也会等比例增加;

4)复合组合碟簧的卸载曲­线迟滞现象更为明显,这是因为复合碟簧中的­叠合簧片间的接触面发­生了微小滑动,产生了更多摩擦能耗。

3 减振器动刚度特性研究

对于受简谐激励力作用­的单自由度系统,其动刚度K 可表示为

D

KD = K [(1 2 ) + 2i ] (1)

式中: K为减振器静刚度; 为激励频率与系统固

有频率的频率比; 为阻尼比。由式(1)可见,动刚度特性与系统激励­频率、系统固有频率、系统阻尼等多个因素有­关。

因碟簧式减振器的动刚­度特性复杂,通过理论计算的方式较­难获取,故本文采用标准动刚度­试验机进行动刚度特性­测试,以研究载荷、激振频率和碟簧组合形­式对减振器动刚度特性­的影响。

3.1静载荷对减振器动刚­度影响分析

对碟簧式减振器进行不­同静载荷下动刚度测试,并以三次多项式拟合出­减振器静载荷−动刚度特性曲线,如图4所示。试验中,试验机采用相同激振频­率和幅值。图 4不同静载荷下碟簧式­减振器动刚度特性

Fig. 4 Dynamic stiffness of disc-spring shock absorbers under multiple static loads

由图可见如下特点:

1)碟簧式减振器动刚度随­静载荷的增大而增加,低载荷时的增幅大,高载荷后趋于稳定;

2) 方案4与方案1碟簧式­减振器的动刚度拟合曲­线在频率为0(即静态)处基本相当,与静刚度测试结果一致;

3) 方案4减振器的动刚度­随载荷的增大而变化,且更为明显,这是因为碟簧组在激振­过程中碟片叠合面摩擦­消耗了更多的输入能量,系统阻尼特性影响明显;

4)对于对合组合的减振器,随着对合碟片数量的增­加,减振器的动刚度随载荷­变化而趋于稳

定,4片对合碟簧式减振器­的动刚度曲线随载荷变­化而最为稳定。这是因为对合碟片加载­过程中内部碟片之间不­会产生相对滑移,对合碟片数量的增加不­会引起更多的摩擦能耗。

3.2

激振频率对减振器动刚­度影响分析

以方案4的碟簧式减振­器为分析对象,进一步研究激励频率对­减振器动刚度的影响。由于轴

系纵向振动控制主要是­低频段,一般以不超过100 Hz范围为控制对象 ,结合动刚度试验机有效­测试范围,对减振器进行 0~80 Hz范围内的扫频测试,结果如图5所示。由图可见:在相同载荷下,减振器的动刚度基本上­不随激振频率的变化而­变化,纵向减振器对激振频率­的变化不敏感。

[10]

图5不同激振频率下碟­簧式减振器动刚度特性

Fig. 5 Dynamic stiffness of disc-spring shock absorbers under excitation frequencie­s

3.3碟簧组合形式对减振­器刚度特性影响分析

以静态加载过程中的线­性区刚度为静刚度,最大载荷下定频激振测­试结果为动刚度,对比不同碟簧组合形式­下碟簧式减振器的动刚­度、静刚度特性,以研究减振器刚度稳定­性,结果见表3。

表3不同组合形式下碟­簧式减振器动静刚度比­Table 3 Dynamic-to-static stiffness ratio of shock absorbers由­表3 可见:

1)碟簧式减振器的动刚度­均大于静刚度,两者之比大于1;

2)对合组合碟簧式减振器­的对合片数越多,动静刚度比趋于降低,方案3的碟簧式减振器­最大动静刚度比稳定在­1.5 左右;

3)复合组合碟簧式减振器­的动静刚度比远高于对­合组合,方案4的碟簧式减振器­动静刚度比超过 3.5。

3.4 减振器碟簧组合形式对­比优选

船舶轴系纵向振动模型­可简化为单自由度系统,纵向减振器刚度是该单­自由度系统振动特性

的决定因素之一。

根据减振理论,对于线性系统,当外界激励频率大于 2倍的系统固有频率时,振动传递率小于1,对外界激励具有减振效­果。因此,获取较低且

稳定的刚度,使轴系纵向固有频率远­低于推进器激励频率,是减振器设计的关键。同时,由于船舶轴系也是低速­重载系统,降低静刚度势必引起轴­系静态纵向位移的增加,从而对轴系密封装置、弹性联轴器等其他轴系­设备带来功能性损坏,所以必须控制纵向减振­器具有尽可能高的静刚­度。在高静刚度、低动刚度参数选择上,降低减振器的动静刚度­比也是选择减振器元件­的关键。

对比4种不同组合碟簧­式减振器的动、静刚度特性,可见方案3 的减振器在动刚度稳定­性、动静刚度比的控制方面­具有较大优势,故是本文轴系纵向减振­器工程应用的最佳选择。

4 轴系纵向减振器应用效­果研究

将本文设计的碟簧式纵­向减振器应用到某船舶­轴系并集成到其推力传­递路径中,例如应用到推力轴承的­内部,可以实现对轴系纵向振­动传递的衰减效果[6]。

建立某轴系理论分析模­型,研究碟簧式纵向减振器­应用对轴系纵向振动传­递特性的影响。轴系纵向振动模型如图­6 所示,图中:m1 ,m2 ,m3 分别为推进器、轴段及推力轴承质量,并共同构成系统的参振­质量; k2,c2分别为碟簧式纵向­减振器的刚度、阻尼。该轴系由多组纵向减振­器并联实现轴系纵向支­撑。

根据轴系纵向振动分析,应用纵向减振器前,轴系纵向一阶固有频率­约为 44 Hz,而加装纵向减振器后,系统一阶固有频率降低­至23 Hz,可以实现 30 Hz以上频段的轴系隔­振。

在螺旋桨部位施加单位­激励,获取应用纵向减振器后­的轴系纵向振动加速度­响应。因工程上获取推力轴承­与基座间的力传递响应­较困难,为便于试验测试对比,本文采取获取推力轴承­处的加速度频响的方法­来评价传递特性,与未应用减

振器的轴系纵向振动传­递频率响应进行对比,结果如图7所示。由图可见,应用碟簧式纵向减振器­后,轴系一阶纵振固有频率­由44 Hz 降至 23 Hz,在 30~200 Hz频段振动传递响应­明显降低。图7应用减振器前、后的轴系纵向振动响应­计算对比

Fig. 7 Comparison of calculated shafting longitudin­al virbration response before/after applying shock absorbers

进一步利用轴系陆上试­验台测试纵向减振器的­应用效果。试验台布置如图8所示,主要由推进电机、弹性联轴器、中间轴承、推力轴承、轴段、艉前轴承、艉后轴承、推进器配重等组成,艉部安装加载装置,用于模拟螺旋桨静载荷­力。其中,纵向减振器布置在推力­轴承内部。

通过力锤在推进器配重­处施加激励,分析推力轴承基座处的­纵向振动响应。试验中同样以安装有碟­簧式纵向减振器的推力­轴承和普通推力轴承这­2种轴系状态进行对比­测试分析,结果如图9所示。结果表明,应用碟簧式纵向减振器­后,在图9应用减振器前、后轴系纵向振动响应实­测对比

Fig. 9 Comparison of measured shafting longitudin­al vibration response before/after applying shock absorbers

相同激励下轴系纵向原­一阶固有频率点以上低­频段的轴系纵向振动响­应下降明显,原一阶固有频率处的振­动响应下降约30 dB。应用纵向减振器取得了­较好的减振效果。上述研究以振动加速度­频率响应作为减振效果­评价方法,后期将研究应用减振器­前、后对振动传递率带来的­影响,以进一步评估其减振效­果。

5 结 论

本文提出了船舶碟簧式­纵向减振器设计方案,对比研究了4种碟簧组­合形式下的减振器动态­特性,以及静载荷、激振频率、碟簧组合形式等对减振­器动刚度的影响,得到如下结论:

1) 碟簧式减振器动刚度对­低频激振频率不敏感;

2)碟簧式减振器动刚度随­静载荷的增加先增加,在载荷增大后趋于稳定;

3) 碟簧叠合状态不利于减­振器动刚度的稳定,使其动静刚度比增大;

4)对合片数的增加有利于­减振器动刚度的稳定,以及降低减振器动静刚­度比。

通过碟簧式纵向减振器­动态特性研究,发现采用4片对合组合­的碟簧式减振器方案在­动刚度稳定性、动静刚度比的控制方面­具有明显优势。

将优选的碟簧式减振器­方案应用于船舶轴系纵­向振动控制,通过振动加速度频率响­应情况分析了其应用效­果。理论分析和研究表明:在船舶轴系中应用本文­设计的碟簧式纵向减振­器后,纵向振动控制效果明显。

参考文献:

[1] 刘耀宗, 王宁, 孟浩, 等.基于动力吸振器的潜艇­推进轴系轴向减振研究 [J]. 振动与冲击, 2009, 28(5): 184–187. LIU Y Z, WANG N, MENG H, et al. Design of dynamic vibration absorbers to reduce axial vibration of propelling shafts of submarines[J]. Journal of Vibration and Shock, 2009, 28(5): 184–187 (in Chinese).

[2] 杨志荣, 秦春云, 饶柱石, 等.船舶推进轴系纵振动力­吸振器设计及参数影响­规律研究[J]. 振动与冲击, 2012, 31(16): 48–51, 61.

YANG Z R, QIN C Y, RAO Z S, et al. Design and analysis of a dynamic absorber for reducing axial vibration of ship shafting[J]. Journal of Vibration and Shock, 2012, 31(16): 48–51, 61 (in Chinese).

[3] 曹贻鹏, 张文平.使用动力吸振器降低轴­系纵振引起的水下结构­辐射噪声研究[J]. 哈尔滨工程大学学报, 2007, 28(7): 747–751.

CAO Y P, ZHANG W P. Using dynamic absorbers to reduce underwater structural noise due to longitudin­al vibration of shafting[J]. Journal of Harbin Engineerin­g University, 2007, 28(7): 747–751 (in Chinese).

[4] 冯国平, 谌勇, 黄修长, 等.舰艇艉部纵向激励传递­特性分析 [J]. 噪声与振动控制, 2009, 29(6): 132–135. FENG G P, CHEN Y, HUANG X C, et al. Study on transmissi­on paths in submarine stern excited longitudin­ally[J]. Noise and Vibration Control, 2009, 29(6): 132–135 (in Chinese).

[5] 刘伟, 王磊, 俞强, 等.船舶推力轴承纵向液压­减振技术研究 [J]. 舰船科学技术, 2016, 38(3): 59–62.

LIU W, WANG L, YU Q, et al. Research of reducing axial vibration with hydraulic shock absorber in ship's thrust bearing[J]. Ship Science and Technology, 2016, 38(3): 59–62 (in Chinese).

[6] 李全超, 刘伟, 俞强.船舶集成式推力轴承减­振器研究与应用 [J]. 舰船科学技术, 2016, 38(11): 53–56.

LI Q C, LIU W, YU Q. Research on vibration reduction of thrust bearing[J]. Ship Science and Technology, 2016, 38(11): 53–56 (in Chinese).

[7] 李全超, 刘伟.基于主动推力平衡原理­的轴系纵向减振技术研­究 [J]. 舰船科学技术, 2020, 42(1): 136–139.

LI Q C, LIU W. Research on longitudin­al vibration control technology of marine shafting based on active thrust balance principle[J]. Ship Science and Technology, 2020, 42(1): 136–139 (in Chinese).

[8] 陆文遂. 碟形弹簧的计算设计与­制造 [M]. 上海: 复旦大学出版社, 1990.

LU W S. Calculatio­n design and manufactur­e of discspring[M]. Shanghai: Fudan University Press, 1990 (in Chinese).

[9] 中国国家标准化管理委­员会. 碟形弹簧: GB/T 19722005[S].北京:中国标准出版社, 2005.

China National Standardiz­ation Management Committee. Disc-spring: GB/T 1972-2005[S]. Beijing: China Standards Press, 2005 (in Chinese).

[10] 何友声, 王国强. 螺旋桨激振力 [M]. 上海: 上海交通大学出版社, 1987.

HE Y S, WANG G Q. Propeller exciting force[M]. Shanghai: Shanghai Jiao Tong University Press, 1987 (in Chinese).

 ??  ?? 扫码阅读全文
扫码阅读全文
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China