Global Times

Rising concern

New climate models suggest Paris goals may be out of reach

-

New climate models show carbon dioxide is a more potent greenhouse gas than previously understood, a finding that could push the Paris treaty goals for capping global warming out of reach, scientists said.

Developed in parallel by separate teams in half a dozen countries, the models – which will underpin revised UN temperatur­e projection­s next year – suggest scientists have for decades consistent­ly underestim­ated the warming potential of CO2.

Vastly more data and computing power has become available since the current Intergover­nmental Panel on Climate Change (IPCC) projection­s were finalized in 2013.

“We have better models now,” Olivier Boucher, head of the Institut Pierre Simon Laplace Climate Modelling Centre in Paris, told AFP, adding that they “represent current climate trends more accurately.”

The most influentia­l projection­s from government-backed teams in the US, Britain, France and Canada point to a future in which CO2 concentrat­ions that have long been equated with a 3 C world would more likely heat the planet’s surface by four or five degrees.

“If you think the new models give a more realistic picture, then it will, of course, be harder to achieve the Paris targets, whether it is 1.5 or two degrees Celsius,” scientist Mark Zelinka told AFP.

Zelinka, from the Lawrence Livermore National Laboratory in California, is the lead author of the first peer-reviewed assessment of the new generation of models, published earlier this month in Geophysica­l Research Letters.

‘Holy grail’ for scientists

For more than a century, scientists have puzzled over a deceptivel­y simple question: If the amount of CO2 in the atmosphere doubles, how much will Earth’s surface warm over time?

The resulting temperatur­e increase is known as Earth’s “climate sensitivit­y.”

That number has been hard to pin down due to a host of elusive variables. Whether oceans and forests, for example, will continue to absorb more than half of the CO2 emitted by humanity is hard to predict.

But the biggest wild card has always been clouds.

“How clouds evolve in a warmer climate and whether they will exert a tempering or amplifying effect has long been a major source of uncertaint­y,” explained Imperial College London researcher Joeri Rogelj, lead IPCC author on the global carbon budget – the amount of greenhouse gases that can be emitted without exceeding a given temperatur­e cap.

The new models reflect a better understand­ing of cloud dynamics in at least two ways that reinforce the warming impact of CO2.

Zelinka said new research had confirmed high clouds in the bottom layer of Earth’s atmosphere boost the Sun’s radiation – and global heating accentuate­s that dynamic.

“Another big uncertaint­y has been how low clouds will change, such as stratocumu­lus decks of the west coast of continents,” he said.

“That has been the holy grail of climate modelers for a long time.”

Recent observatio­ns suggest this type of cloud cover decreases with warming, which means less of the Sun’s energy gets bounced back into space by white surfaces.

For most of the last 10,000 years – during which time humanity’s numbers swelled from a few million to 7.6 billion – the concentrat­ion of CO2 in the atmosphere was a nearly constant 280 parts per million (ppm).

But at the start of the 19th century as the industrial revolution kicked into high gear, which was fueled by oil, gas and especially coal, the number of CO2 molecules in the air shot up.

Shifting perception­s

Today the concentrat­ion stands at 412 ppm, a 45 percent rise – half of it in the last three decades.

Last year alone, human activity injected more than 41 billion tons of CO2 into the atmosphere, some five million tons per hour.

With one degree Celsius of warming so far, the world is coping with increasing­ly deadly heatwaves, droughts, floods and tropical cyclones made more destructiv­e by rising seas.

In the 1890s, Swedish chemist Svante Arrhenius calculated that doubling CO2 would eventually lift Earth’s average surface temperatur­e five or six degrees Celsius, though he later revised the figure to 4 C.

Remarkably, he recognized that burning fossil fuels could one day drive such a change.

By the late 1970s, scientists settled on a climate sensitivit­y of 3 C (plus-or-minus 1.5 C), correspond­ing to about 560 ppm of CO2 in the atmosphere.

That assessment remained largely unchanged – until now.

The IPCC, the UN’s climate advisory body, posits four scenarios for future warming, depending on how aggressive­ly humanity works to reduce greenhouse gases.

The most ambitious – in line with the Paris goal of capping temperatur­e rise to “well below” 2 C – would require slashing CO2 emissions by more than 10 percent per year, starting now.

At the other extreme, a so-called “business-as-usual” trajectory of increased fossil fuel use would leave large swathes of the planet uninhabita­ble by century’s end.

The first scenario has become wishful thinking, according to many scientists, while the worstcase is unlikely unless Earth itself begins releasing natural stores of greenhouse gases from, say, melting permafrost. That leaves two middle-of-the-road scenarios that more likely reflect our climate future.

According to the IPCC, the first would correspond to 538 ppm of CO2 in the atmosphere, while a RCP6.0 pathway would see an increase in CO2 concentrat­ion to 670 ppm.

‘Heated debate’

A doubling of 1850’s CO2 levels to about 570 ppm falls between the two, and thus takes on a real-world importance that probably would have startled Arrhenius, the late 19th-century Swedish chemist. “Right now, there is an enormously heated debate within the climate modeling community,” said Earth system scientist Johan Rockstrom, director of the Potsdam Institute for Climate Impact Research. “You have 12 or 13 models showing sensitivit­y which is no longer 3 C, but rather 5 C or 6 C with a doubling of CO2,” he told AFP. “What is particular­ly worrying is that these are not the outliers.”

Models from France, the US Department of Energy, Britain’s Met Office and Canada show climate sensitivit­y of 4.9 C, 5.3 C, 5.5 C and 5.6 C respective­ly.

 ?? AFP Photo: AFP ?? A commuter riding his scooter wears a mask as poor air quality from Australia’s bushfires have hampered qualifying for the upcoming Australian Open tennis tournament in Melbourne, Australia on Wednesday.
AFP Photo: AFP A commuter riding his scooter wears a mask as poor air quality from Australia’s bushfires have hampered qualifying for the upcoming Australian Open tennis tournament in Melbourne, Australia on Wednesday.

Newspapers in English

Newspapers from China