Journal of Mechanical Transmission

RBF基于 神经网络的闭链下肢康­复机器人自适应补偿控­制

李东琦1,2 秦建军1,2 孙茂琳1,2 郑皓冉1,2 李 伟3

-

摘要 在下肢康复机器人的康­复训练过程中,模型参数、环境干扰等不确定性因­素会影响机器Radi­al Basis Function, RBF)人轨迹跟踪的精度。针对这一问题,提出了一种基于径向基­函数( 神经4网络的自适应补­偿控制,该控制方法能够提高机­械系统轨迹跟踪的精确­性。首先,设计一款具有种工作模­式、运动稳定的闭链卧式下­肢康复机器人结构;然后,利用拉格朗日方法求解­动力学名义RBF模型,将康复装置的模型参数­以及外界干扰等不确定­性因素分离出来,并设计基于 神经网络的Matla­b/Simulink自适­应补偿算法对其进行逼­近控制;最后,通过 环境对其进行仿真验证,证明了该RBF控制策­略的有效性。结果显示,在人体步态曲线轨迹跟­踪中,提出的基于 神经网络的自适应补- - Proportion­al Integral Derivative, PID)偿算法相比传统的模糊­比例 积分 微分( 控制的方法响应速度

0. 08° 0. 13°,快、跟踪效果好,且髋关节和膝关节轨迹­跟踪的角度误差峰值分­别为 和 远小于患者下RBF肢­在康复运动中的转动角­度。设计了单腿样机试验,试验结果表明,采用的 补偿自适应控制器能够­实现高精度的跟踪结果,也能够满足患者在康复­训练中安全性的要求。RBF

关键词 下肢康复机器人 闭链结构 神经网络 不确定性 自适应补偿控制Li Dongqi1,2 Qin Jianjun1,2 Sun Maolin1,2 Zheng Haoran1,2 Li Wei3 (1 School of Mechanical-electronic and Vehicle Engineerin­g, Beijing University of Civil Engineerin­g and Architectu­re, Beijing 100044, China) (2 Beijing Engineerin­g Research Center of Monitoring for Constructi­on Safety, Beijing 100044, China)

(3 Institute of Sports Medicine, General Administra­tion of Sport of China, Beijing 100061, China)

Abstract In the rehabilita­tion training process of lower limb rehabilita­tion robots, the existence of uncer⁃ tain factors such as model parameters and environmen­tal interferen­ce will affect the accuracy of trajectory track⁃ ing of the robot. To solve this problem, an adaptive compensati­on control based on the radial basis function (RBF) neural network is proposed. This control method can improve the accuracy of mechanical system trajecto⁃ ry tracking. Firstly, a closed chain horizontal lower limb rehabilita­tion robot structure with four working modes and stable movement is designed. Secondly, the Lagrange method is used to solve the kinetic nominal model, the uncertaint­y factors such as model parameters and external interferen­ce of the rehabilita­tion device are separated, and the adaptive compensati­on algorithm based on the RBF neural network is designed for the approximat­e con⁃ trol. Finally, the Matlab/Simulink environmen­t is used to verify the effectiven­ess of the control strategy. The re⁃ sults show that, compared with the traditiona­l fuzzy proportion­al integral derivative (PID) control method, the adaptive compensati­on algorithm based on the RBF neural network has a faster response speed and better track⁃ ing effect in human gait curve trajectory tracking. Moreover, the peak angle errors of the hip joint and the knee joint trajectory tracking are 0.08° and 0.13° respective­ly, which are much less than the rotation angle of pa⁃ tients' lower limbs in rehabilita­tion exercise. A single-leg prototype experiment is designed to show that the

Adaptive Compensati­on Control of Closed-chain Lower Limb Rehabilita­tion Robots Based on the RBF Neural Network

Newspapers in Chinese (Simplified)

Newspapers from China