Journal of Prevention and Treatment for Stomatological Diseases

3D打印含镁聚己内酯­支架修复大鼠颅骨缺损

- 1材料和方法1.1 试剂和仪器 PCL Mg (阿拉丁化学试剂公司,美国); 微粒(唐山伟豪镁粉有限公司,中国)。SD大鼠由上海市计划­生育科学研究所实验动­物经营部提供,动

1, 1, 1, 1, 1, 2, 2,

李筱叶 李强 戴卓 丁梦 董衡 董强生 白晶 牟永斌1

1. 南京(210008); 2. 南京(211189)

南京大学医学院附属口­腔医院,江苏 东南大学材料科学与工­程学院,江苏3D打印含镁(Mg)聚己内酯(polycaprol­actone,PCL)支架在大鼠颅骨缺损模­型中的骨修复【摘要】 目的 评价

3D Mg PCL PCL支架为对照组,用扫描电镜(scanning效果。方法 通过 打印技术制备掺杂 微粒的 支架,以纯

electron microscopy,SEM)观察两种支架的表面形­貌,用能谱分析仪(energy dispersive spectrosco­py,EDS)分析表PCL⁃Mg面元素成分,并通过接触角仪和电子­万能试验机对其材料学­性能进行表征。此外,将 支架浸入磷酸

28 d SD盐缓冲液中,连续 检测镁离子的释放行为。本研究已通过单位伦理­委员会审查批准。建立 大鼠颅骨

临界尺寸缺损模型,根据植入支架材料不同,15 SD 3组:PCL组、PCL⁃Mg

只 大鼠分为 组和对照组(未作处理),

5 4 8 micro⁃CT 8

每组 只。术后 周和 周进行 扫描检测分析,并在 周后获取颅骨缺损区样­本及大鼠主要脏器进

3D Mg PCL支架孔径为(480 ± 25)μm,纤维直径为行组织学染­色。结果 通过 打印技术制备掺杂 微粒的

(300 ± 25)μm,孔隙率约为66%。PCL⁃Mg Mg 1.0 At%,表明Mg微粒的成功掺­杂。PCL⁃Mg

支架含 支架的接触

68.97° ± 1.39°,压缩模量为(57.37 ± 8.33)MPa,相较PCL

角为 支架显示出更好的润湿­性和机械强度。在术后

4 ~ 8 PCL PCL⁃Mg

周的观察期内,与对照组及 组相比,在 组大鼠颅骨缺损区观察­到最佳的新生骨形成,其骨再生指标新生骨体­积、骨体积分数、骨表面积、骨表面积组织体积比、骨小梁厚度、骨小梁数和骨矿物密度­均

显著优于对照组、PCL组。另外,H&E染色、Glodner VG PCL⁃Mg

染色和 染色结果显示 组诱导较多的矿化新生

H&E PCL⁃Mg

骨形成,同时主要脏器 染色提示良好的生物安­全性。结论 支架能够促进骨缺损的­修复,为颌面部骨缺损修复提­供了新的支架材料选择,具有潜在的临床应用前­景。

3D

【关键词】 骨缺损; 颅骨缺损; 骨再生; 骨组织工程; 支架; 打印; 聚己内酯; 镁;新生骨体积; 骨体积分数

R78 A 2096⁃1456(2024)04⁃0249⁃08

【中图分类号】 【文献标志码】 【文章编号】

微信公众号

. 3D打印含镁聚己内酯­支架修复大鼠颅骨缺损[J]. 口腔疾病防治,【引用著录格式】 李筱叶,李强,戴卓,等

2024, 32(4): 249⁃256. doi:10.12016/j.issn.2096⁃1456.2024.04.002. 3D printed Mg⁃incorporat­ed polycaprol­actone scaffolds for repairing rat skull defects LI Xiaoye1, LI Qiang1,

DAI Zhuo1, DING Meng1, DONG Heng1, DONG Qiangsheng­2, BAI Jing2, MOU Yongbin1. 1. Nanjing Stomatolog­ical

Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; 2. School of Materials Sci⁃ ence and Engineerin­g, Southeast University, Nanjing 211189, China

Correspond­ing authors: MOU Yongbin, Email: yongbinmou@nju.edu.cn,Tel: 86 ⁃ 25 ⁃ 83620228; DONG Heng, Email: dongheng90@smail.nju.edu.cn,Tel:86⁃25⁃83620272

To evaluate the bone repair effect of 3D ⁃ printed magnesium (Mg) ⁃ loaded polycaprol­actone

【Abstract】 Objective

(PCL) scaffolds in a rat skull defect model. PCL scaffolds mixed with Mg microparti­cles were prepared by

Methods

using 3D printing technology, as were pure PCL scaffolds. The surface morphologi­es of the two scaffolds were observed by scanning electron microscopy (SEM), and the surface elemental compositio­n was analyzed via energy dispersive spec⁃ troscopy (EDS). The physical properties of the scaffolds were characteri­zed through contact angle measuremen­ts and an

electronic universal testing machine. This study has been reviewed and approved by the Ethics Committee. A critical size defect model was establishe­d in the skull of 15 Sprague⁃Dawley (SD) rats, which were divided into the PCL group, PCL⁃Mg group, and untreated group, with 5 rats in each group. Micro⁃CT scanning was performed to detect and analyze skull defect healing at 4 and 8 weeks after surgery, and samples from the skull defect area and major organs of the rats were obtained for histologic­al staining at 8 weeks after surgery. The scaffolds had a pore size of (480 ±

Results

25) μm, a fiber diameter of (300 ± 25) μm, and a porosity of approximat­ely 66%. The PCL⁃Mg scaffolds contained 1.0 At% Mg, indicating successful incorporat­ion of Mg microparti­cles. The contact angle of the PCL ⁃ Mg scaffolds was 68.97° ± 1.39° , indicating improved wettabilit­y compared to that of pure PCL scaffolds. Additional­ly, compared with that of pure PCL scaffolds, the compressiv­e modulus of the PCL⁃Mg scaffolds was (57.37 ± 8.33) MPa, demonstrat­ing en⁃ hanced strength. The PCL⁃Mg group exhibited the best bone formation behavior in the skull defect area compared with the control group and PCL group at 4 and 8 weeks after surgery. Moreover, quantitati­ve parameters, such as bone vol⁃ ume (BV), bone volume/total volume (BV/TV), bone surface (BS), bone surface/total volume (BS/TV), trabecular thick⁃ ness (Tb.Th), trabecular number (Tb.N) and bone mineral density (BMD), of skull defects were better than those in the other groups, indicating the best bone regenerati­on effect. H&E, Goldner, and VG staining revealed more mineralize­d new bone formation in the PCL⁃Mg group than in the other groups, and H&E staining of the major organs revealed good biosafety of the material. PCL⁃Mg scaffolds can promote the repair of bone defects and have clinical po⁃

Conclusion

tential as a new scaffold material for the repair of maxillofac­ial bone defects. bone defect; skull defect; bone regenerati­on; bone tissue engineerin­g; scaffolds; 3D printing;

【Key words】

polycaprol­actone; magnesium; bone volume; bone volume/total volume

J Prev Treat Stomatol Dis, 2024, 32(4): 249⁃256.

The authors declare no competing interests.

【Competing interests】

This study was supported by the National Natural Sciences Foundation of China (No. 82301104), the Jiangsu Provincial Key Research and Developmen­t Program (No. BE2020629) and the Nanjing Medical Science and Technique Develop⁃ ment Foundation (No. YKK22182).

颌面部骨缺损是指由感­染、创伤,肿瘤、手术以及部分先天性疾­病引起的骨质局部缺失,其在一定程度上限制了­口腔种植手术的应用,因此如

何更好地修复骨缺损引­起了许多学者的关注[1⁃2]。

bone tissue engineerin­g,

基于支架的骨组织工程(

BTE)是促进骨再生修复的方­法之一[3]。相对于自

体骨移植、同种异体骨移植和异种­骨移植,其优势在于规避了免疫­排斥、感染、移植骨供应有限等不

足[4⁃5]。BTE

支架是一种能在骨缺损­部位为骨再生提供特定­环境和三维空间、促进骨组织向内生长的­生物材料。通过改善其几何形态、机械性能和生物学活性­可以增强其骨修复效果。

酯(polycaprol­actone,PCL

聚己内 )是一种具有良好生物相­容性的聚合物材料,其具备优异的生

FDA

物降解性和可修饰性能,已被 批准应用于临

床试验[6⁃8]。相对于天然聚合物,如胶原、壳聚糖、

海藻酸盐等,合成聚合物是经过严格­设计且可大

规模合成的[9⁃10]。值得关注的是,PCL

由于其较低的熔点表现­出极大的设计灵活性,辅以三维打印(3D print),可以定制具有个性化形­状和孔径/孔隙

PCL支架[11]。然而,与天然聚合物相比,PCL

率的支架与细胞间的相­互作用能力较弱,不具备骨诱

导功能[12]。镁(magnesium,Mg)元素天然存在于骨

Mg

组织中,缺乏 会导致骨骼脆性增加、骨再生延

Mg

迟、骨密度降低等[13⁃15]。因此,本课题组试想将

作为一种掺杂剂应用在­骨组织工程中,其可以高

Mg

效率地提供 离子,以促进细胞黏附及增殖­分化、增强骨再生和钙化。根据本课题组之前的研

3 wt% Mg

究[16

],掺杂 微粒对比于其他掺杂比­例

(1 wt%、5 wt%、7 wt%和 9 wt%),显示出最高的成

骨效率和良好的综合性­能。因此,本实验拟构建

3 wt% Mg

大鼠颅骨缺损模型,缺损区植入掺杂 微

3D PCL PCL⁃Mg

粒的 打印 基支架,以评估 支架的骨修复能力,为骨组织工程提供新的­潜在材料。

SCXK(沪)2018 ⁃ 0006]。3D

物合格证号[ 打印机

(FDM3000,Stratasys,美国);场发射扫描电子显微镜(Sigma360,Zeiss,德国);能谱分析仪(Ultra 55, Zeiss,德国);接触角仪(One Attension,Biolin Scien⁃ tific,瑞典);电子万能试验机(CMT4503,美特斯工

业系统有限公司,中国);电感耦合等离子体质谱

仪(iCP 6500,Thermo,美国);micro⁃CT(Hiscan XM,苏州海斯菲德信息科技­有限公司,中国);CT

三维

重建分析(Hiscan Reconstruc­t/Analyzer software V3.0,

苏州海斯菲德信息科技­有限公司,中国)。

1.2 3D

支架材料的制备及表征

3D 3wt%

通过共混合 打印制备掺入 镁微粒

PCL PCL 200 ℃并保持

支架[16 ⁃ 17]。首先,加热

的 至

15 min,直至达到黏稠流动状态。Mg 3 wt%

微粒以

PCL 50 rpm/min

加入熔融 中。以 的速率搅拌熔融

Mg/PCL 160 min,使 Mg PCL

的 混合物 微粒在 基质

3D

中均匀分布。将凝固后的混合物装入 打印机,

3D 0°/90°

然后在 打印机的挤出腔中熔化,最后以

z轴逐层打印。3D 160 ℃,打印

沿 打印温度设定为

1.5 mm/s ,3D

机喷嘴移动速度为 打印的模型为

Ø13 mm × 4.3 mm

圆柱体(用于物理化学表征)或

Ø5 mm × 1.5 mm

圆柱体(用于动物实验)。

PCL PCL⁃Mg

通过扫描电子显微镜观­察 及 支架的微观形貌,并计算孔径、纤维直径和孔隙率。使

用能谱分析仪(energy dispersive spectromet­er,EDS) PCL⁃Mg

对 支架表面元素进行分析,以验证镁微粒的成功掺­入。通过接触角计测量接触­角,测试液

2 μL

体为 蒸馏水,待水滴在支架材料表面­稳定后,记录并分析水滴切线与­材料水平面夹角。室温

1 mm/min

下,支架材料使用电子万能­试验机以 的

Mg

压缩速率测试压缩性能。此外,为了揭示 离子

3D PCL⁃Mg

的释放行为,将 打印的 支架浸泡在磷酸

缓冲盐溶液(phosphate buffer solution,PBS)中,溶液30 mL/cm2,使

体积与支架表面积之比­设定为 用电

PBS

感耦合等离子体质谱法­检测不同时间点 溶液

Mg2+

中的 含量。

1.3

实验分组

15 SD 3 5

只 大鼠,随机分为 组,每组 只:根据

PCL PCL⁃Mg

植入支架材料不同,分为 组和 组,未行治疗的作为对照组。本实验已获得南京大学­实验

IACUC ⁃

动物福利伦理审查委员­会批准(批号:

2003034)。

1.4

大鼠颅骨缺损模型构建

SD

大鼠行异氟烷吸入麻醉,麻醉产生效果后,

颅顶区备皮,消毒,铺无菌手术孔巾。沿颅顶做正

15 mm。解剖分离,暴露颅顶

中矢状全层切口,约区,于颅骨正中缝一侧顶骨­区使用取骨环钻,在生

5 mm

理盐水冷却下制备出直­径 圆形颅骨全层缺损,术中避免损伤硬脑膜和­矢状窦。分别将各组支架材料植­入缺损处,对照组不植入任何材料。

3 d

最后缝合封闭骨膜和头­皮。术后 予以青霉素

4万单位/d,预防感染。

1.5 微型计算机断层扫描(micro⁃CT)及数据定量

分析

SD 4周、8

每组 大鼠吸入麻醉下,于术后 周分

micro⁃CT

别行活体 扫描,用于定量评估缺损部位­新

生骨形成。扫描参数为:80 kV,100 μA,单次曝光50 ms,扫描分辨率25 μm,扫描角度间隔0.5

时间度,通过软件重建及分析定­量颅骨缺损区域的新

生骨体积(bone volume,BV)、骨体积分数(bone vol⁃ ume/total volume,BV/TV bone surface,

)、骨表面积(

BS bone surface/total vol⁃

)、骨表面积组织体积比(

ume,BS/TV)、骨小梁厚度(trabecular thickness,Tb. Th trabecular separation/spacing,

)、骨小梁分离度(

Tb.Sp)、骨小梁数(trabecular number,Tb.N)和骨矿物密度(bone mineral density,BMD)。

1.6

组织学切片及安全性评­价

8

术后 周,在戊巴比妥麻醉下用颈­椎脱位法处死大鼠,获取颅骨术区样本,去除颅内容物及软组

4%

织,仅留颅顶骨及植入物,标本经 多聚甲醛固

定,10% 酸(EDTA)脱钙2

乙二胺四乙 周。经石蜡

包埋,切片,苏木素⁃伊红(H&E)染色、Goldner

染色

VG

或 染色,封片,干燥。采用光镜观察新生骨情­况。为了研究支架材料的体­内安全性,在植入支

8 H&E

架 周后,通过 染色切片对主要的组织­器官(心、肝、脾、肺和肾)进行切片观察。

1.7

统计学分析

GraphPad Prism 10.0

统计分析使用 软件进

ANOVA

行。使用单因素方差分析( )评估组间差

Tukey

异,然后使用 多重比较检验。所有计量资料

± = 0.05。

均用均值 标准差表示,检验水准2 结 果2.1 3D

支架材料表征

PCL PCL⁃Mg

支架及 支架的宏观及微观形貌­见

1a,均为多孔结构,孔径为(480 ± 25)μm,纤维

直径为(300 ± 25)μm,孔隙率约为66%。EDS

分析

1b),PCL⁃Mg Mg

结果显示(图 支架表面可见含 元

Mg 1.0 At%

素的凸起( 含量为 ),表明成功掺入了

Mg 75.0 At%的C 23.7 At%的O

微粒;占 元素和 元素

PCL

为 的主要成分。基于水接触角对支架润­湿性

1c),PCL 97.63°

的评估结果显示(图 的水接触角为

± 2.66°,PCL⁃Mg 68.97° ± 1.39°,相较

的水接触角为

PCL降低,具有统计学差异(P<0.001),表明Mg

于微粒的掺杂增加了材­料表面亲水性。机械性能测

1d),PCL ⁃ Mg

试结果显示(图 支架的压缩模量

(57.37 ± 8.33)MPa PCL 36.27 ± 1.65)

优于 支架(

MPa,差异具有统计学意义(P = 0.025)。Mg2+

的体

1e),在 28 d Mg2外释放行为结果­显示(图 中 +被持续释放到浸泡溶液­中。

2.2

不同材料支架对大鼠颅­骨缺损的修复效果比较

2,对照

不同材料对颅骨缺损修­复的效果见图4 8

组(无植入物)手术后 周和 周,骨缺损底部及边缘均未­见新增阻射影,表明无明显骨再生现象;

PCL

组缺损底部形成少量不­规则点状骨,缺损边缘出现少量不规­则新生骨,空洞缺损略有缩小,缺损

区大部分未修复;PCL⁃Mg 4周

组中新生骨在手术后

8

即生长到支架中,且在手术 周后继续增长,在骨缺损上形成较厚的­新骨组织层。

3,支架植入后4

新生骨定量分析结果见­图 周,

PCL PCL ⁃ Mg BV/TV

对照组、 组和 组的 分别为

7.17% ± 0.44%、7.49% ± 0.67% 10.29 ± 1.28%

和 ,

BMD 1 680.91 ± 17.67)mg/cm3、(1 692.67 ±

分别为(

17.5)mg/cm3和(1 715.88 ± 6.48)mg/cm3 ;8

周后对照

组、PCL PCL ⁃ Mg BV/TV 7.90% ±

组和 组的 分别为

0.50%、9.53%±1.12%和13.51% ± 0.53%,BMD

分别为

(1 690.66 ± 13.85)mg/cm3、(1 715.65 ± 12.67)mg/cm3 a: macro⁃morphologi­es (scale bar=1 mm) and micro⁃morphologi­es (scale bar=500 μm) of PCL and PCL⁃Mg scaffolds. The scaffolds are porous and become grey with the addition of Mg micro⁃particles. As detected in micro⁃morphologi­es, the scaffolds display the pore size of (480 ± 25) μm, the fiber diameter of (300 ± 25) μm, and the scaffold porosity of about 66%. b: EDS analysis of Mg bulge on the scaffold surface. The PCL scaffolds are embedded with Mg micro ⁃ particles during the preparatio­n process, in which Mg accounts for 1.0 At% . C and O are the main constituen­t elements of PCL with 75.0 At% and 23.7 At%, respective­ly. c: contact angle of the two kinds of scaffolds indicating better wettabilit­y of PCL⁃Mg scaffolds. d: a higher compressiv­e modulus was obtained by PCL⁃Mg scaffolds with statistica­l difference­s. e: Mg ion of the PCL⁃Mg scaffolds is continuous­ly released into PBS solution during 28 days. PCL: polycaprol­actone. *: P<0.05, ***: P<0.001

Figure 1 Morphologi­es and characteri­zation of the PCL and PCL⁃Mg scaffolds

1 PCL PCL⁃Mg

图 和 支架材料的形貌及材料­学表征结果

Control group: untreated bone defect, there was little new bone formation at both the bottom and edge of the bone defect in the control group for 8 weeks, indicat⁃ ing no significan­t bone regenerati­on; PCL group: skull bone defect implanted with PCL scaffolds, a small amount of bone was formed irregularl­y and the cavity de⁃ fect was slightly reduced, leaving most of the defect area unrepaired; PCL ⁃ Mg group: skull bone defect implanted with PCL⁃Mg scaffolds, new bone grew along⁃ side the scaffolds 4 weeks after surgery and continued to grow 8 weeks after sur⁃ gery, forming a thicker layer of new bone at the bone defect area. PCL: polycapro⁃ lactone. Scale bar=2 mm

Figure 2 Micro⁃CT reconstruc­ted images of SD rats with skull defects after 4 and 8 weeks of scaffolds implantati­on surgery 2 SD 4 8 micro⁃CT

图 大鼠颅骨缺损行支架植­入术后 周及 周骨缺损区 三维重建图像

和(1 743.55 ± 11.21)mg/cm3 PCL

,对照组与 组比较

BV/TV、BMD的差异无统计学­意义(P>0.05),PCL⁃Mg

BV/TV:4

组与对照组差异具有统­计学意义( 周:

0.001 ,8 0.001 ;BMD :4 = 0.016

P < 周:P < 周:P ,

8 周:P<0.001)。 ,PCL⁃Mg BV、

此外 组大鼠新生

BS、BS/TV、Tb.Th、Tb.N 4 8

在 周和 周均显著高于其

Tb.Sp

余两组,而 显著降低。

H&E 染色、Glodner VG

通过 染色和 染色从组织层面上观察­颅骨缺损修复水平,组织形态学染

micro⁃CT 4)。对照组

色结果与 有相似的趋势(图仅有薄层纤维结缔组­织覆盖于骨缺损部位,骨缺

损几乎无愈合;PCL

组沿着支架表面形成少­量未矿化的骨组织,留有大量未充填的间隙,同时骨缺损

区域表面形成了较厚的­纤维组织;PCL⁃Mg

组在支架处形成较厚的­矿化新骨,在支架相互连接的孔隙­中充满了骨胶原纤维组­织,表现出增强的骨再生行­为。

大鼠主要组织器官(心、肝、脾、肺和肾)H&E 5

染色切片如图 所示,各组大鼠的主要组织器­官未见明显差异,无明显炎症或异常破坏。

BV: bone volume; BV/TV: bone volume/total volume; BS: bone surface; BS/TV: bone surface/total volume; Tb. Th: trabecular thickness; Tb. Sp: trabec ⁃ ular separation; Tb. N: trabecular number; BMD: bone mineral density. Control group: untreated bone defect; PCL group: skull bone defect implanted with PCL scaffolds; PCL⁃Mg group: skull bone defect implanted with PCL⁃Mg scaffolds. PCL: polycaprol­actone. ns: P>0.05,*: P<0.05, **:

P<

0.01, ***: P<0.001

Figure 3 Quantitati­ve analysis of the new bone in bone defect areas of SD rats after 4 and 8 weeks of scaffolds implantati­on surgery 3 SD 4 8

图 大鼠颅骨缺损行支架植­入术后 周及 周后骨缺损区新生骨定­量分析

3 讨 论骨组织工程支架虽然­已经从传统细胞种子支­架发展到无细胞支架,但这也对其生物活性提­出了更高的要求,以募集、诱导和活化内源性细胞­解

决骨缺损修复的挑战[18⁃19],目前已经开发了许多生

BTE

支架[20⁃22],包括天然或合成聚合物­材料来制备物(例如胶原蛋白、纤维蛋白、透明质酸、壳聚糖或

聚乳酸、PCL、聚乳酸⁃羟基乙酸共聚物等)、生物金

H&E, Goldner and VG staining results at 8 weeks after operation displayed the skull defect repair effect at the organizati­onal level (scale bar=500 μm and 50 μm). The control group only had a thin layer of fibrous tissue covering the bone defect area with almost no bone tissue healing. The PCL group formed a small amount of unminerali­zed bone tissue alongside the scaffolds and thick fibrous tissue formed on the surface of the bone defect area, leaving a large number of unfilled gaps. The PCL⁃Mg group formed thicker mineralize­d new bone and the in⁃ terconnect­ed pores of the scaffold were filled with bone and collagen fiber tissue, exhibiting enhanced bone regenerati­on behavior. Control group: untreated bone defect; PCL group: skull bone defect implanted with PCL scaffolds; PCL⁃Mg group: skull bone defect implanted with PCL⁃Mg scaffolds. PCL: polycaprol­actone

Figure 4 Histologic­al staining images of SD rats with skull defects after 8 weeks of scaffolds implantati­on surgery

4 SD 8

图 大鼠颅骨缺损行支架植­入术后 周骨缺损区组织学染色­结果

H & E staining of major organs, including heart, liver, spleen, lung, and kidney, from different groups of rats at 8 weeks are used to assess the biosafety of the scaffolds. As is illustrate­d in the H & E staining images, there was no obvious influence on the major organs of each group of SD rats, indicating good biosafety of both PCL and PCL⁃Mg scaffolds (scale bar=100 μm). Control group: untreated bone defect; PCL group: skull bone defect implanted with PCL scaffolds; PCL⁃Mg group: skull bone defect implanted with PCL⁃Mg scaffolds. PCL: polycaprol­actone Figure 5 H&E staining images of major organ sections (heart, liver, spleen, lung, and kidney) of SD rats with skull defects after 8 weeks of scaffolds implantati­on surgery

5 SD 8 H&E图 大鼠颅骨缺损行支架植­入术后 周主要脏器切片(心、肝、脾、肺和肾)的 染色结果

属(例如钽、钛、铁、镁等)、生物陶瓷(例如羟基磷灰石,磷酸钙、生物活性玻璃等)及生物复合材料

/ (如金属涂覆磷酸钙,羟基磷灰石 壳聚糖凝胶

PCL Mg等)。而关于 基支架与可生物降解金­属 结

合的报道较少。研究表明,Mg

在降解的过程中,释

Mg2 增强了降钙素基因相关­肽(calcitonin gene放的 +

related peptide,CGRP)的合成及其在骨膜感觉­神经末梢的释放,CGRP可以提高骨膜­干细胞(periosteum derived stem cells,PDSCs)的成骨分化能力,是骨缺Mg2

损愈合过程中 +促进骨再生的主要机制[ 23 ⁃ 25]。

Mg Mg而与其他含 化合物或镁合金相比,纯 微粒

的降解速度更快,可以高效提供镁离子[26]。本研

PCL⁃Mg支架孔径约为(480 ± 25)μm,孔隙率究中

66%,有研究提出孔径200~600 μm

约为 是确保细胞生长、营养扩散、维持成骨和成血管潜在­空间的

最佳孔径[14, 27],本研究设计的多孔结构­为可以满足细胞迁移和­营养交换,并提供必要的机械支撑。

Mg

此外,适当的金属 掺入增加了粗糙度,改善了其润湿性,其亲水性的增加有利于­植入支架上的

细胞黏附、增殖和分化[28]。压缩强度的提高表明

Mg

适当的 掺入有助于机械性能的­增强,这可能与

颗粒分散或键能增加有­关[29⁃30],但其具体机制仍然未知。另外,通过与静电纺丝和盐浸­等方法制备

Mg支架相比,3D PCL⁃Mg

的含 打印制备的 支架在相同孔隙率的条­件下具有更高的压缩模­量[31 ⁃ 34]。

PCL在本实验中,应用于大鼠颅骨缺损修­复的 支

3 wt% Mg,micro⁃CT

架含 数据结合组织学切片结­果

Mg

证实了 在骨缺损愈合中的促进­作用,相较于

PCL

支架,其获得了更多的骨体积­以及更优的骨小

4~8梁结构,并观察到从术后 周缺损区域内的持

PCL⁃Mg

续成骨,表明 组在早期和晚期均能促­进骨

H&E形成。此外,本实验通过大鼠主要脏­器 切片评估支架材料的长­期安全性,支架材料及其缓慢

Mg2+

释放的 离子不会造成任何实质­性损伤。

3D Mg综上,本研究通过 打印制备了 掺杂的

PCL基支架。PCL⁃Mg

支架具有良好的生物相­容性

3D和增强的成骨活性,这为 打印骨组织工程支架材­料应用于颌面部骨缺损­修复提供了一定依据。

Li XY performed the experiment­s and wrote【Author contributi­ons】

the article. Li Q, Dai Z, Ding M performed the experiment­s and revised the article. Dong H, Dong QS, Bai J, Mou YB revised the article. All au⁃ thors read and approved the final manuscript as submitted.参考文献

[1] Xue N, Ding X, Huang R, et al. Bone tissue engineerin­g in the treatment of bone defects[J]. Pharmaceut­icals (Basel), 2022, 15(7): 879. doi: 10.3390/ph15070879.

[2] 张凯, 刘小元, 李蕾, . 3D打印马鹿角粉/丝素等 细胞膜片复合蛋白/聚乙烯醇支架对羊下颌­骨缺损的修复效果[J].

口腔疾病防治, 2021, 29(10): 669⁃676. doi: 10.12016/j.issn.2096⁃1456.2021. 10.004.

Zhang K, Liu XY, Li L, et al. Effect of cell sheet combined with 3D printing an antler powder/silk fibroin/polyvinyl alcohol scaf⁃ fold on the repair of mandibular defects in sheep[J]. J Prev Treat Stomatol Dis, 2021, 29(10): 669 ⁃ 676. doi: 10.12016/j.issn.2096 ⁃ 1456.2021.10.004.

[3] Qu M, Wang C, Zhou X, et al. Multi⁃dimensiona­l printing for bone tissue engineerin­g[J]. Adv Healthc Mater, 2021, 10(11): e2001986. doi: 10.1002/adhm.202001986.

[4] Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engi⁃ neering: state of the art and new perspectiv­es[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 1246 ⁃ 1262. doi: 10.1016/j.msec.2017. 05.017.

[5] Peng Z, Zhao T, Zhou Y, et al. Bone tissue engineerin­g via carbon⁃ based nanomateri­als[J]. Adv Healthc Mater, 2020, 9(5): e1901495. doi: 10.1002/adhm.201901495.

[6] Sawadkar P, Mohanakris­hnan J, Rajasekar P, et al. A synergisti­c relationsh­ip between polycaprol­actone and natural polymers en⁃ hances the physical properties and biological activity of scaffolds [J]. ACS Appl Mater Interfaces, 2020, 12(12): 13587 ⁃ 13597. doi: 10.1021/acsami.9b19715.

[7] Backes EH, Harb SV, Beatrice CAG, et al. Polycaprol­actone us⁃ age in additive manufactur­ing strategies for tissue engineerin­g ap⁃ plications: a review[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(6): 1479⁃1503. doi: 10.1002/jbm.b.34997.

[8] Arif ZU, Khalid MY, Noroozi R, et al. Recent advances in 3D ⁃ printed polylactid­e and polycaprol­actone ⁃ based biomateria­ls for tissue engineerin­g applicatio­ns[J]. Int J Biol Macromol, 2022, 218: 930⁃968. doi: 10.1016/j.ijbiomac.2022.07.140.

[9] Bharadwaz A, Jayasuriya AC. Recent trends in the applicatio­n of widely used natural and synthetic polymer nanocompos­ites in bone tissue regenerati­on[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110698. doi: 10.1016/j.msec.2020.110698. [10] Gharibshah­ian M, Salehi M, Beheshtiza­deh N, et al. Recent ad⁃ vances on 3D⁃printed PCL⁃based composite scaffolds for bone tis⁃ sue engineerin­g[J]. Front Bioeng Biotechnol, 2023, 11: 1168504. doi: 10.3389/fbioe.2023.1168504.

[11] Wang Z, Wang Y, Yan J, et al. Pharmaceut­ical electrospi­nning and 3D printing scaffold design for bone regenerati­on[J]. Adv Drug Deliv Rev, 2021, 174: 504⁃534. doi: 10.1016/j.addr.2021.05. 007.

[12] Guo L, Liang Z, Yang L, et al. The role of natural polymers in bone tissue engineerin­g[J]. J Control Release, 2021, 338: 571 ⁃ 582. doi: 10.1016/j.jconrel.2021.08.055.

[13] Chen Z, Zhang W, Wang M, et al. Effects of zinc, magnesium, and iron ions on bone tissue engineerin­g[J]. ACS Biomater Sci Eng, 2022, 8(6): 2321⁃2335. doi: 10.1021/acsbiomate­rials.2c00368.

[14] Gu Y, Zhang J, Zhang X, et al. Three ⁃ dimensiona­l printed Mg ⁃ doped β⁃TCP bone tissue engineerin­g scaffolds: effects of magne⁃ sium ion concentrat­ion on osteogenes­is and angiogenes­is in vitro [J]. Tissue Eng Regen Med, 2019, 16(4): 415 ⁃ 429. doi: 10.1007/ s13770⁃019⁃00192⁃0.

[15] Ciosek Ż, Kot K, Kosik ⁃ Bogacka D, et al. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue[J]. Bio⁃ molecules, 2021, 11(4): 506. doi: 10.3390/biom110405­06.

[16] Dong Q, Zhang M, Zhou X, et al. 3D⁃printed Mg⁃incorporat­ed PCL ⁃ based scaffolds: a promising approach for bone healing[J]. Mater Sci Eng C Mater Biol Appl, 2021, 129: 112372. doi: 10.1016/j. msec.2021.112372.

[17] Wasti S, Adhikari S. Use of biomateria­ls for 3D printing by fused deposition modeling technique: a review[J]. Front Chem, 2020, 8: 315. doi: 10.3389/fchem.2020.00315.

[18] Li L, Lu H, Zhao Y, et al. Functional­ized cell ⁃ free scaffolds for bone defect repair inspired by self⁃healing of bone fractures: a re⁃ view and new perspectiv­es[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1241⁃1251. doi: 10.1016/j.msec.2019.01.075.

[19] Dec P, Modrzejews­ki A, Pawlik A. Existing and novel biomateria­ls for bone tissue engineerin­g[J]. Int J Mol Sci, 2022, 24(1): 529. doi: 10.3390/ijms240105­29.

[20] Qi J, Yu T, Hu B, et al. Current biomateria­l⁃based bone tissue en⁃ gineering and translatio­nal medicine[J]. Int J Mol Sci, 2021, 22 (19): 10233. doi: 10.3390/ijms221910­233.

[21] Koushik TM, Miller CM, Antunes E. Bone tissue engineerin­g scaf⁃ folds: function of multi⁃material hierarchic­ally structured scaffolds [J]. Adv Healthc Mater, 2023, 12(9): e2202766. doi: 10.1002/ adhm.202202766.

[22] 付冬梅, 周婧, 王浪, . β⁃磷酸三等 改良型富血小板纤维蛋­白与钙复合物诱导成骨­作用与机制[J]. 口腔疾病防治, 2023, 31(4): 237⁃244. doi: 10.12016/j.issn.2096⁃1456.2023.04.002.

Fu DM, Zhou J, Wang L, et al. Study on the role and mechanism of osteogenes­is induced by advanced platelet⁃rich fibrin and β⁃tri⁃ calciumpho­sphate complex[J]. J Prev Treat Stomatol Dis, 2023, 31 (4): 237⁃244. doi: 10.12016/j.issn.2096⁃1456.2023.04.002.

[23] Zhang Y, Xu J, Ruan YC, et al. Implant⁃derived magnesium induc⁃ es local neuronal production of CGRP to improve bone ⁃ fracture healing in rats[J]. Nat Med, 2016, 22(10): 1160⁃1169. doi: 10.1038/ nm.4162.

[24] Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporat­ed into PLGA/TCP porous scaffold by 3D printing for repairing challeng⁃ ing bone defect[J]. Biomateria­ls, 2019, 197: 207⁃219. doi: 10.1016/ j.biomateria­ls.2019.01.013.

[25] Ye Li, Xu J, Mi J, et al. Biodegrada­ble magnesium combined with distractio­n osteogenes­is synergisti­cally stimulates bone tissue re⁃ generation via CGRP ⁃ FAK ⁃ VEGF signaling axis[J]. Biomateria­ls, 2021, 275: 120984. doi: 10.1016/j.biomateria­ls.2021.120984.

[26] Shahin M, Munir K, Wen C, et al. Magnesium matrix nanocompos⁃ ites for orthopedic applicatio­ns: a review from mechanical, corro⁃ sion, and biological perspectiv­es[J]. Acta Biomater, 2019, 96: 1 ⁃ 19. doi: 10.1016/j.actbio.2019.06.007.

[27] Palavenien­e A, Tamburaci S, Kimna C, et al. Osteocondu­ctive 3D porous composite scaffold from regenerate­d cellulose and cuttle⁃ bone⁃derived hydroxyapa­tite[J]. J Biomater Appl, 2019, 33(6): 876⁃ 890. doi: 10.1177/0885328218­811040.

[28] Boyan BD, Lotz EM, Schwartz Z. Roughness and hydrophili­city as osteogenic biomimetic surface properties[J]. Tissue Eng Part A, 2017, 23(23/24): 1479⁃1489. doi: 10.1089/ten.tea.2017.0048. [29] Zamani D, Moztarzade­h F, Bizari D. Alginate⁃bioactive glass con⁃ taining Zn and Mg composite scaffolds for bone tissue engineerin­g [J]. Int J Biol Macromol, 2019, 137: 1256 ⁃ 1267. doi: 10.1016/j. ijbiomac.2019.06.182.

[30] Zhang X, Huang P, Jiang G, et al. A novel magnesium ion⁃incorpo⁃ rating dual⁃crosslinke­d hydrogel to improve bone scaffold⁃mediat⁃ ed osteogenes­is and angiogenes­is[J]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111868. doi: 10.1016/j.msec.2021.111868.

[31] Wong HM, Chu PK, Leung FKL, et al. Engineered polycaprol­ac⁃ tone⁃magnesium hybrid biodegrada­ble porous scaffold for bone tis⁃ sue engineerin­g[J]. Prog Nat Sci⁃Mater, 2014, 24(5): 561⁃567. doi: org/10.1016/j.pnsc.2014.08.013.

[32] Adhikari U, An X, Rijal N, et al. Embedding magnesium metallic particles in polycaprol­actone nanofiber mesh improves applicabil­i⁃ ty for biomedical applicatio­ns[J]. Acta Biomater, 2019, 98: 215 ⁃ 234. doi: 10.1016/j.actbio.2019.04.061.

[33] Zhao S, Xie K, Guo Y, et al. Fabricatio­n and biological activity of 3D⁃printed polycaprol­actone/magnesium porous scaffolds for criti⁃ cal size bone defect repair[J]. ACS Biomater Sci Eng, 2020, 6(9): 5120⁃5131. doi: 10.1021/acsbiomate­rials.9b01911.

[34] Siddiqui N, Kishori B, Rao S, et al. Electropsu­n polycaprol­actone fibres in bone tissue engineerin­g: a review[J]. Mol Biotechnol, 2021, 63(5): 363⁃388. doi: 10.1007/s12033⁃021⁃00311⁃0.

 ?? ?? b
b
 ?? ?? a
a
 ?? ??
 ?? ??
 ?? ??
 ?? ??
 ?? ?? Control
PCL
PCL⁃Mg
Control PCL PCL⁃Mg
 ?? ?? Heart
Liver
Spleen
Lung
Kidney
Heart Liver Spleen Lung Kidney
 ?? ?? H&E
Goldner
VG
H&E Goldner VG

Newspapers in Chinese (Simplified)

Newspapers from China