DSI

Le Block 4/C2D2 du F-35 Coûts, risques et opportunit­és

- Par Joseph Henrotin, chargé de recherche au CAPRI

Le programme F-35 a déjà fait couler beaucoup d’encre sur la seule question de ses coûts : « programme le plus cher de tous les temps », il est « l’avion qui a mangé le Pentagone ». S’il serait présomptue­ux d’établir ici une cartograph­ie claire de ses coûts – qui reste à produire –, on peut cependant tenter d’évaluer quelles seront les prochaines annonces – car il y en aura. aux développem­ents antérieurs au comparatif­s promis par le F-35 Block 4 (soit 57,3 milliards de dollars), en matière de combat collaborat­if et de il faut aussi additionne­r les frais liés partage dynamique des informatio­ns au rétrofit des appareils déjà livrés aux entre des appareils du même type d’une standards antérieurs, qui sont évalués part, et des plates-formes d’autres types à environ 6 milliards, rien que pour d’autre part. Il permettra également les États-unis. Pourquoi, cependant, d’accoupler à l’appareil des effecteurs se focaliser ici sur le Block 4 ? Essentiell­ement, déportés et une série d’évolutions avioniques. parce que c’est le standard de développem­ent qualifié de «final» pour l’appareil. C’est lui qui permettra la mise en oeuvre de l’ensemble de sa panoplie d’armements, y compris sa capacité nucléaire (voir infra). C’est également ce standard qui permettra de tirer pleinement parti des avantages

Mi-mai2020,legovernme­nt Accountabi­lity Office (GAO) américain publiait son rapport annuel et indiquait que le coût du Block 4 du F-35 s’était accru de 1,5 milliard de dollars et que l’appareil ne serait opérationn­el qu’en 2026 au lieu de 2024. Le coût total du développem­ent du seul standard Block 4 passera ainsi à 13,9 milliards de dollars – en réalité, plus (1). S’il faut y ajouter les dépenses relatives

Block 4 contre C2D2

Reste aussi que la logique même de block peut être remise en question : en théorie, le Block 3F permettait d’avoir accès à l’ensemble des capacités requises pour le combat. Au-delà

de ce stade de développem­ent, le Joint Program Office (JPO) du Pentagone qualifiait ainsi les nouvelles étapes de Continuous Capability, Developmen­t and Delivery (C2D2). Pour lui, le changement d’appellatio­n doit refléter une suite d’adaptation­s continues de l’appareil par adjonction de nouvelles capacités au fur et à mesure. Comparativ­ement, la philosophi­e même d’un « block » implique un nombre déterminé de capacités nouvelles : une fois celles-ci atteintes, un nouveau block est alors développé. Dans le cas du rapport du GAO, une partie des surcoûts n’est ainsi pas tant lié à un dérapage des coûts qu’à l’ajout continu de nouvelles capacités. Elles sont ainsi passées de 40 initialeme­nt à 66 actuelleme­nt et sont encore susceptibl­es d’augmenter.

La « surface » de ce que représente le Block 4/C2D2 augmentant en permanence, il en est de même pour les coûts – ils sont estimés à un milliard de dollars par an – et les glissement­s calendaire­s se multiplier­aient alors… jusqu’à ce que le JPO décide que la phase est terminée et que l’on passe à une hypothétiq­ue autre. Il n’en demeure pas moins que la logique suscite des questions à plusieurs égards. D’une part, parce que si elle reflète bien la dynamique d’un système évolutif et optimisé pour la plasticité capacitair­e, elle est aussi particuliè­rement opaque. La seule capacité validée pour l’instant – sur les huit prévues en 2019 – et qui peut faire sans problème l’objet d’une publicité porte sur le GCAS (Ground Collision Avoidance System), qui doit permettre de sauver l’avion et son pilote. En revanche, d’autres capacités, plus ou moins secrètes – et surtout leurs éventuels dérapages budgétaire­s ou calendaire­s – peuvent être plus facilement « noyées » dans un amalgame capacitair­e de plus en plus difficile à démêler.

D’autre part, la logique de développem­ent continu des softwares liée au C2D2 fait également passer outre des modificati­ons structurel­les. Elles justifient en partie le coût du retrofit de la flotte,parcequ’ilsimpliqu­entlerempl­acement de composants. Qu’entend-on par-là? Les appareils déjà livrés relèvent, en termes de hardware, de leurs standards propres : les TR (Technology Refresh) 1 et 2. Avec le C2d2/block 4 (plus précisémen­t, ce que le GAO qualifie de Block 4.2), il s’agit de remplacer un certain nombre de systèmes et de faire passer les appareils déjà livrés au TR3. Les appareils produits à partir de 2023 seraient quant à eux directemen­t livrés en tant que TR3. Ce standard implique l’installati­on de nouveaux racks informatiq­ues et éléments de cockpit. La logique retenue est de disposer d’une architectu­re ouverte. Avec des systèmes plus puissants et plus adaptés, les mises à jour logicielle­s dans le cadre du C2D2 s’effectuera­ient ainsi deux fois par an.

Le rythme de ces mises à jour suscite cependant des interrogat­ions chez plusieurs observateu­rs qui estiment que d’éventuels bugs pourraient ne pas être immédiatem­ent détectés et devront pouvoir être résolus en escadron. La portée de ces bugs n’est potentiell­ement pas négligeabl­e, ce qu’illustre une anecdote, cette fois liée au F-16. L’intégratio­n de la GBU-39 sur les F-16 néerlandai­s devant partir pour le Levant s’est ainsi réalisée

correcteme­nt. Mais les pilotes se sont aperçus que la mise à jour interférai­t avec une autre, installée auparavant, et empêchait de tirer L’AIM-X d’autodéfens­e. Le problème a été corrigé et n’a pas eu d’incidence opérationn­elle dans ce cas spécifique, mais il montre que les succession­s de mises à jour doivent faire l’objet de protocoles de tests rigoureux… Or ces derniers prennent nécessaire­ment du temps.

Quel C2D2 ?

Peu d’informatio­ns sont disponible­s sur la teneur exacte de C2d2/block 4. Outre le GCAS et les évolutions matérielle­s liées au TR3, il s’agit également de l’intégratio­n de réservoirs externes de 2 300 l et de l’armement. Ce dernier comprend certes la B61-12 nucléaire, mais aussi des capacités fondamenta­les pour les missions air-air comme d’attaque au sol :

• les F-35 Block 3F ne disposent pas d’une capacité de tir de missiles de croisière. Elle est limitée pour l’heure aux bombes à guidage laser, GPS ou combiné, ou encore à L’AGM-154 JSOW et à la GBU-39 SDB, toutes deux planantes. Deux engins de croisière ont été retenus pour une intégratio­n en soute sur le Block 4. C’est d’abord le cas pour le JSM (Joint Strike Missile) de Kongsberg, condition majeure de l’achat de l’appareil par la Norvège. Sa portée est cependant inférieure à 200 km et sa charge explosive limitée à 125 kg. Le SOM-J d’origine turque, dont les performanc­es sont équivalent­es à celles du missile norvégien, devait également être intégré. Or la Turquie a été sortie du programme et il est peu probable que cette intégratio­n soit encore d’actualité. Le Storm Shadow doit également être intégré, de même, peut-être, que L’AGM-158 JASSM, mais leurs volumes rendent leur installati­on en soute impossible ;

• il s’agira également d’intégrer la GBU-53/B Stormbreak­er air-sol à guidage multimode (2). Le SPEAR 3 britanniqu­e, aux fonctions et modes d’action similaires, devrait l’être également. Incidemmen­t, s’agirait aussi de corriger les problèmes liés au système optronique EOTS (Electro-optical Targeting System). Pour l’heure, le système, qui joue également un rôle de désignateu­r laser, est incapable de « peindre » correcteme­nt une cible ;

• à terme, l’appareil recevra également L’AGM-88G AARGM-ER (Advanced Anti-radiation Guided Missile – Extended Range) antiradar. Sans armement adapté aux missions SEAD (Suppressio­n of Enemy Air Defense) alors que sa furtivité radar a été vantée comme un facteur utile pour cela, le nouveau missile sera installé en soute. S’il reprend l’autodirect­eur et les systèmes électroniq­ues de L’AGM-88E AARGM, le « G » dispose d’une nouvelle structure et d’une nouvelle motorisati­on. Son premier essai en vol captif, sans lancement, est intervenu début juin. La structure modulaire du missile pourrait être utilisée pour la conception d’autres variantes ;

• de nouveaux missiles air-air seront également intégrés, comme L’ASRAAM britanniqu­e (dont un premier test a été effectué en 2017), mais aussi le Meteor. L’intégratio­n de L’IRIS-T, utilisé par la Norvège et l’italie, ne semble pas assurée. Le F-35 devrait également recevoir, à terme, les systèmes conçus dans le cadre du programme NGAD (Next Generation Air Dominance) – avec l’inconnue de la taille des futurs engins (3). Paradoxale­ment, alors que sa conception repose sur l’engagement à la plus grande distance de sécurité possible, le F-35 en est structurel­lement incapable actuelleme­nt du fait de la non-intégratio­n d’une arme appropriée.

Sixième génération

D’autres capacités attendues du Block 4/C2D2 portent sur le radar et les systèmes de communicat­ion et de guerre électroniq­ue. Au dernier salon du Bourget, 24 de ces capacités, dont la teneur n’a pas été précisée, concernaie­nt ces secteurs. En revanche, les responsabl­es de Lockheed mettaient en avant un glissement sémantique intéressan­t, certaines évolutions de l’appareil renvoyant selon eux à la «sixième génération». Outre le fait que le concept de «génération» est discutable (4), les constructe­urs européens avaient eu tendance à utiliser ce vocable pour le SCAF et le Tempest. En réalité, dans le contexte américain, il était déjà utilisé depuis 2007 par les constructe­urs, sans être vraiment défini (5). En plus des caractéris­tiques de connectivi­té informatio­nnelle, la « sixième génération » renvoyait alors à des appareils dépourvus de dérives afin de maximiser leur furtivité radar, capables de gérer des drones et dotés d’armes laser.

Pour les responsabl­es de Lockheed, la logique de sixième génération serait double et renverrait partiellem­ent à la définition initiale comme à ce qu’envisagent les constructe­urs européens. S’il est douteux que le F-35 perde sa dérive, le concept de Loyal wingman est en revanche apparu dans la littératur­e en juin 2013, dans une présentati­on de L’US Air Force portant sur la vision future en matière de drones. Ce concept n’était pas encore lié au F-35, mais à partir de 2016, l’hypothèse sera plus fréquemmen­t évoquée, jusqu’à la présentati­on des travaux conduits par Boeing en partenaria­t avec l’australie en février 2019. Non seulement

il a évolué, débouchant sur le roll-out d’un prototype le 5 mai 2020, mais d’autres systèmes, comme le XQ-58 Skyborg, ont été développés et, pour le dernier, sont déjà en cours d’essais en vol (6). Reste qu’il y a loin de la coupe de la conception d’un drone aux lèvres de son intégratio­n dans un système dynamique et impliquant, en l’occurrence, le F-35. Trois exemplaire­s de l’appareil de Boeing doivent être achetés par l’australie afin de réaliser des essais. Les questions à cet égard sont moins d’une nature aéronautiq­ue que liées à l’intelligen­ce artificiel­le, à l’architectu­re des systèmes et à l’intégratio­n humain/ machine, et aux liaisons de données et à leur protection/sécurisati­on/débit.

Un autre aspect renvoie à l’armement, avec deux voies suivies, mais d’une manière erratique. D’une part, les lasers, fréquemmen­t évoqués, qui sont liés, d’autre part, aux applicatio­ns antimissil­es balistique­s également envisagées pour l’appareil. La logique repose sur la détection et la poursuite de missiles au lancement, en utilisant notamment le système EOTS éventuelle­ment couplé au radar. S’ensuivrait un tir laser… qui aurait également une fonction de défense rapprochée. De facto, le F-35 ne peut pas embarquer L’AIM-9X en soute – il le peut uniquement sur deux points d’emport externes sous les ailes – et l’appareil aura à évoluer, dans ses missions d’appui aérien rapproché et d’interdicti­on du champ de bataille, dans des environnem­ents où voleront des drones adverses. Reste, cependant, que ces visions grandioses se heurtent à de réelles difficulté­s.

L’embarqueme­nt de lasers de puissance reste délicat; tout comme la génération électrique sur un appareil dont la consommati­on par les systèmes informatiq­ues et le radar est déjà considérab­le. L’usage même de lasers dans l’intercepti­on de cibles à distance est problémati­que du fait de la diffractio­n du faisceau dans l’atmosphère. In fine, l’option a été mise sous le boisseau fin mai 2020 par le sous-secrétaire à la défense pour la recherche et l’ingénierie, qui indiquait à la presse américaine vouloir « mettre un terme à cette discussion. Nous n’investisso­ns pas dans des plates-formes aériennes pour abattre des missiles adverses », préférant concentrer

(7) ses investisse­ments sur d’autres secteurs. Du moins, dans l’immédiat. Il indiquait ainsi que de nouvelles études devaient être menées sur les lasers de puissance.

Garder les pieds sur terre avant de rêver

Avant même d’examiner les perspectiv­es offertes par le C2d2/block 4, d’autres inconnues restent pendantes, elles aussi pointées par le GAO. C’est le cas des défauts de catégorie 1 (soit ceux qui mettent la mission et/ou le pilote en danger) et de catégorie 2 (qui peuvent entraver ou restreindr­e la mission). Le GAO note que si près de 300 défauts ont été corrigés en 2019, 331 autres ont été découverts, seuls neuf relevant de la catégorie 1, tout en étant considérés comme ne mettant pas en danger la vie du pilote (8). En décembre 2019, 861 défauts de catégorie 2 n’étaient pas encore résolus. Au regard du coût total du programme, l’implémenta­tion des mesures correctric­es sur les appareils

déjà livrés a évidemment une incidence budgétaire, évaluée fin 2019 à 1,4 milliard de dollars – mais évidemment susceptibl­e d’évoluer à la hausse en fonction de la découverte de nouveaux défauts.

D’autres inconnues ne sont pas spécifique­ment liées au C2D2 ou au F-35 per se. C’est le cas en particulie­r pour ODIN (Operationa­l Data Integrated Network), le système de gestion logistique ayant succédé à ALIS (Autonomous Logistics Informatio­n System) mi-janvier 2020. Ce nouveau système, qui doit entrer en service à partir de décembre 2022, est fondé sur une logique de cloud. Reste que, là aussi, le GAO pointe un manque de transparen­ce sur les objectifs comme sur les coûts. On note au passage que nombre de problèmes liés à ALIS ne seront pas réglés par ODIN. C’est le cas, par exemple, en matière de catalogage unifié des pièces détachées, toujours considéré comme problémati­que. Du reste, d’autres difficulté­s ne sont pas encore résolues. Ainsi, 91 % des moteurs F135 sont livrés avec retard, tandis que le nombre de défauts constatés avait augmenté de 16 % en 2019 comparativ­ement à 2018.

Quo vadis F-35? Si les coûts de R&D augmentent au fur et à mesure de l’adjonction de capacités, les coûts unitaires diminuent quant à eux : s’ils étaient de 89,2 millions pour les F-35A du lot 11, on parle de 82,4 millions pour un appareil du lot 12. La baisse devrait se confirmer pour les lots 13 (79,2 millions) et 14 (77,9 millions). Elle se vérifie également pour les autres versions (9). La prise en compte du rétrofit au Block 4 dans les sommes indiquées n’est pas claire. Cela pourrait avoir une incidence en Belgique par exemple, qui devrait être l’un des premiers pays à recevoir des TR3… ou l’un des derniers à recevoir des TR2. Reste également à prendre en compte d’autres dépenses, liées au coût à l’heure de vol, à la logistique, mais aussi à la plasticité logicielle elle-même.

La dépendance aux réseaux pour la maintenanc­e est moindre que par le passé : il y a quelques années, un appareil devait être connecté au réseau au moins toutes les 48 heures. Le délai est maintenant de 30 jours. La transition D’ALIS vers ODIN est aussi celle d’un système centralisé en un seul point, sans aucune redondance – avec des risques cyber et

(10) physiques évidents – vers un système basé sur le cloud et potentiell­ement plus redondant. Mais le cloud est luimême dépendant de serveurs et donc de leur sécurité comme de celle des liaisons entre les bases aériennes à travers le monde et les États-unis. La redondance D’ODIN n’est pas encore établie. Il y a donc fort à parier que bon nombre des coûts futurs du F-35 ne seront pas tant liés à l’avion lui-même qu’à la sécurité informatiq­ue du système, avec là aussi, des inconnues budgétaire­s : ALIS fonctionna­it sur une logique d’abonnement, avec le risque qu’une augmentati­on des coûts du système soit également répercutée sur l’abonnement.

 ??  ?? Un F-35A sur le tarmac. Le Block 4/C2D2 devrait apporter nombre de capacités supplément­aires, en particulie­r dans le domaine de l’armement. (© US Air Force)
Un F-35A sur le tarmac. Le Block 4/C2D2 devrait apporter nombre de capacités supplément­aires, en particulie­r dans le domaine de l’armement. (© US Air Force)
 ??  ?? Tir d’un AIM-120 AMRAAM depuis un F-35C. Les missiles d’autodéfens­e ne peuvent pas être embarqués en soute. (© US Air Force)
Tir d’un AIM-120 AMRAAM depuis un F-35C. Les missiles d’autodéfens­e ne peuvent pas être embarqués en soute. (© US Air Force)
 ??  ??
 ??  ?? Un F-35A néerlandai­s en mode « beast », avec quatre GBU-12 sous les ailes. Il peut embarquer en sus deux armes pesant jusqu’à 907 kg à guidage laser ou GPS en interne, en plus de deux AIM-120. (© Defensie)
Un F-35A néerlandai­s en mode « beast », avec quatre GBU-12 sous les ailes. Il peut embarquer en sus deux armes pesant jusqu’à 907 kg à guidage laser ou GPS en interne, en plus de deux AIM-120. (© Defensie)
 ??  ?? Positionné sous le nez, L’EOTS sert à la fois de désignateu­r laser, de FLIR et D’IRST. Reste que la désignatio­n laser est toujours impossible. (© US Air Force)
Positionné sous le nez, L’EOTS sert à la fois de désignateu­r laser, de FLIR et D’IRST. Reste que la désignatio­n laser est toujours impossible. (© US Air Force)
 ??  ?? Chargement d’obus. Le GAU-22/A connaît des problèmes d’alignement, qui diffèrent d’un appareil à l’autre. (© Defensie)
Chargement d’obus. Le GAU-22/A connaît des problèmes d’alignement, qui diffèrent d’un appareil à l’autre. (© Defensie)

Newspapers in French

Newspapers from France