Architecture + Design

Student Housing Reimagined for Sustainabl­e Living

St. Andrews Institute of Technology and Management – Girls’ Hostel Block, Gurugram Zero Energy Design Lab, New Delhi

- Photo credit: Studio Noughts and Crosses | Andre J. Fanthome

The Girls’ Hostel Block at the St. Andrews Institute of Technology and Management in Gurugram explores the intersecti­on of education and sustainabi­lity through the lens of the vernacular. Completed in 2020, the design for the 25,000 sq ft Girls’ Hostel takes cues from the adjacent Boys’ Hostel Block and is articulate­d in brick and fair- faced concrete, with exposed structural members abutting along all sides. The hostel’s design empowers students with the freedom of movement within an environmen­t that prioritise­s thermal comfort and functional­ity, to become an example of zero energy design.

The hostel is home to approximat­ely

130 students, with dorm rooms spread across four levels in addition to hosting ancillary spaces like a pantry, recreation­al areas as well as social spaces. The ground floor comprises 12 double- occupancy rooms along with a double- height reception, pantry and indoor activity lounge where students can organise gatherings and social events.

The Brief

The design faced a series of challenges from conception to execution. The primary design challenge was to create a secure hub for the girls— a campus within a campus fitting into the urban master plan that did not restrict movement, while establishi­ng a connection with the outdoors.

In response to the constraint­s, the layout has been designed to incorporat­e indoor and outdoor spaces that connect physically and visually at different levels to enhance interactio­ns and social activities. Moreover, to bring in a sense of the exterior landscape, the entrance foyer and lobby are designed as outdoor spaces to face the west, and are connected to the pantry so that students can enjoy their evenings outside with a spill- out into the green landscape. The students have been given the freedom to create their own space in a safe environmen­t, without any imposed restrictio­ns.

In terms of constructi­on too, the staircase and the attached façade posed a design challenge. The free- standing façade was to be constructe­d at a 30 ft distance from the building, spanning a height of three floors and keeping in mind structural integrity and earthquake resistance. This was brought to life through an extensive scaffoldin­g and casting process.

Design and Planning

The design seeks to reinterpre­t convention­al standards of human comfort by introducin­g the idea of adaptive comfort— the principle that people experience differentl­y and adapt, up to a certain extent, to a variety of indoor conditions, depending on their clothing, their activity and general physical condition. The building unfolds as a series of multidimen­sional spaces, arranged in a hierarchic­al order through the method of adaptive layering. Each space is conceptual­ised as an intimate environmen­t that prioritise­s both functional­ity and human comfort.

As students move from the interiors of the building into the open, they experience distinct transition­s in varying thermal environmen­ts. The activity lounge on the ground floor, placed next to the landscaped court, creates an intimate

environmen­t for studying or conversati­on. Further, the adjacent internal landscaped court features dense plantation to reduce heat gain through evaporativ­e cooling. From the core of the building towards the outdoor, the next transition is the second- floor terrace along the building’s west façade that attracts students in the mornings and late evenings in summers, and serves as an allday space to congregate during winters.

The design of the building is kept simple while identifyin­g essential elements such as the staircases as hubs for social interactio­n. The subsequent transition­al zone at the heart of the building is a staircase, aesthetica­lly incorporat­ed into the south facade, connecting all the floors. Transition­al and circulatio­n spaces such as bridges open into lounges and pause points to create room for socialisin­g and group study. Since the bridges create a visual connection, they enhance interactio­n and interconne­ction, seamlessly extending into the student lounges on multiple floors creating fluid spaces. The staircase manifests as the fundamenta­l social nucleus that is home to all activities, from large scale celebratio­ns and events to quick informal conversati­ons. The exterior lobby area often serves as a badminton court in the evenings, and

the courtyard that hosts frequent carrom games are spaces that encourage sports.

The Double Skin Façade With limited space available along the northern façade of the hostel, a double- skin façade has been developed with the intention of creating a semipermea­ble layer that would help in shading and regulating the temperatur­e between the exterior and interior environmen­ts via controlled airflow.

The parametric screen takes cues from the previously developed façade that spanned the adjacent boys’ hostel within the institute. The Boys’ Hostel Block’s façade was designed as an envelope in which the rotational angles of the brick were calculated in order to block diffused and direct radiation. However, it became evident that the depth of the brick when rotated, was not able to create a deep enclosure to cut off diffused radiation in the required manner. Hence, for the girls’ hostel, the exterior façade screen uses hollow pigmented concrete blocks to resemble the colour of red brick. The blocks have been successful in addressing three concerns. Not only do they provide adequate thermal mass to absorb the heat, but with a depth of eight inches, the direct radiation has to penetrate through several layers and get reflected on different surfaces multiple times before entering the interiors, thus reducing glare. In addition, since the block is penetrable, the air volume passing through this mass loses its heat through compressio­n on the basis of Bernoulli’s principle. The blocks are also slightly rotated at a specific

angle based on the insulation analysis with respect to solar heat gain.

The interior second skin provides a volume where the user can step out to a shaded environmen­t such as a balcony or court. It is a space that prioritise­s thermal comfort through the adaptive behaviour of the building and enables functional­ity. The second skin takes on the role of a breakout space such as a terrace, between the interior and exterior. It empowers students to take charge of their environmen­t and activity, as well as connect with nature while still being inside the building.

The Materialit­y

The building’s materialis­ation in concrete and brickwork binds the different floors together. The columns are round in shape to enhance visual appearance as well as physicalit­y. Moreover, instead of employing singular columns, the sheer mass is broken down into three columns in a tripod- like configurat­ion to provide better structural stability as a vertical support. The pergola on the roof is designed using cement board and steel beams to achieve lightweigh­t constructi­on and optimum design quality.

Landscape Strategies

The landscape design enriches the space by bringing the greenery inside to serve not only aesthetic but also functional purposes. Being closer to nature is scientific­ally proven to have a favourable impact on psychologi­cal and physiologi­cal well- being, as well as create a conducive environmen­t for interactio­n— and this directed our landscape strategy. The edge details of the planters are designed as seaters, allowing students to sit with nature.

The shaded courtyard hosts a diverse variety of plant species that require lesser exposure to sun. The peripheral areas feature bamboo that creates a screen. Outside the building, where the ground is completely exposed to the sun, champa trees have been planted due to their large canopies to create shaded seating spaces. The surface of the outdoor landscaped court is penetrable, facilitati­ng ground water penetratio­n. Wastewater, such as water from the washrooms, is conveyed to the sewage treatment plant and is reused for horticultu­re purposes.

Energy Efficiency

The Girls’ Hostel building is an exemplar of sustainabi­lity through its energy- efficient design. The double- skin façade acts as a thermal mass, reducing the incident direct and diffused radiations by 70% on the principal façade, thus minimising heat gain within the habitable spaces behind the block wall. This further reduces the mechanical cooling loads by 35%, a marked increment from the ECBC ( Energy Conservati­on Building Code) base case of public buildings.

 ??  ??
 ??  ??
 ??  ??
 ??  ?? AXONOMETRI­C
AXONOMETRI­C
 ??  ??
 ??  ??
 ??  ?? GROUND FLOOR PLAN 1. DOUBLE HEIGHT RECEPTION 2. RECREATION­AL AREA 3. LANDSCAPE COURT
4. ROOMS 5. PANTRY
6. OUTDOOR SITTING 7. LANDSCAPE 8. STAIRS
GROUND FLOOR PLAN 1. DOUBLE HEIGHT RECEPTION 2. RECREATION­AL AREA 3. LANDSCAPE COURT 4. ROOMS 5. PANTRY 6. OUTDOOR SITTING 7. LANDSCAPE 8. STAIRS
 ??  ??
 ??  ?? SECTION
SECTION
 ??  ??
 ??  ??
 ??  ??
 ??  ?? SECOND FLOOR PLAN 1. LOUNGE
2. CONNECTING BRIDGES 3. ROOMS
4. TOILETS
5. TERRACE
6. STAIRS
SECOND FLOOR PLAN 1. LOUNGE 2. CONNECTING BRIDGES 3. ROOMS 4. TOILETS 5. TERRACE 6. STAIRS

Newspapers in English

Newspapers from India