FrontLine

Corrosion poses risk in nuclear waste storage

-

electron microscopy. Their analysis confirms the predicted similarity to the SARS coronaviru­s spike.

However, the authors also report that the affinity of the SARS-COV-2 S protein for human ACE2, the entry point into human cells for some coronaviru­ses, is ten times higher than in the case of SARS. This possibly explains the apparent ease of human-to-human transmissi­on of SARS-COV-2, although more studies are needed to investigat­e this possibilit­y.

Mclellan’s team plans to use their molecule to pursue another line of attack against the virus that causes the disease COVID-19, using the molecule as a “probe” to isolate naturally produced antibodies from SARS-COV-2 patients who have recovered fully. In large enough quantities, these antibodies could help treat a coronaviru­s infection soon after exposure. For example, the antibodies could protect healthcare workers sent into an area with high infection rates at short notice.

canvassing for proposals under such [a] dubious scheme is even more infuriatin­g.” The present “call for proposals” (CFP), says the appeal, “is drafted unscientif­ically from start to finish. The document is full of statements prefaced by ‘it is believed’. Science cannot presume the validity of beliefs, however commonly held. Validity has to be put to test, which is absent in the CFP. Scientific research on cow products cannot presume the efficacies presumed in the CFP. To begin a project with such presumptio­ns is prima facie unscientif­ic.”

“The present proposal,” adds the appeal, “is a biased attempt to push [the] narrative of ‘special status of Indian cows’” by funding research that feeds into conformati­onal bias of the proponents of this scheme.

THE materials the United States and other countries plan to use to store high-level nuclear waste are likely to degrade faster than previously thought because of the way those materials interact, new research from Ohio State University shows.

The findings, published in a recent issue of “Nature Materials”, show that corrosion of nuclear waste storage materials accelerate­s because of changes in the chemistry of the nuclear waste solution and the way the materials interact with one another. “This indicates that the current models may not be sufficient to keep this waste safely stored,” Xiaolei Guo, lead author of the study was quoted in the news release issued by the university.

The team’s research focussed on storage materials for high-level nuclear waste that is highly radioactiv­e. While some types of the waste have half-lives of about 30 years, others like plutonium have a half-life that can be tens of thousands of years.

With no long-term viable nuclear waste disposal mechanism yet in operation, in most sites nuclear waste is stored near the plants where it is produced. While countries around the world have debated the best way to deal with nuclear waste, only Finland has started constructi­on of a longterm repository for high-level nuclear waste.

In general, proposals involve mixing nuclear waste with other materials to form glass or ceramics and then encasing those pieces of glass or ceramics, now radioactiv­e, inside metallic canisters. The canisters are buried deep undergroun­d in a repository to isolate it.

Researcher­s found that when exposed to an aqueous environmen­t, glass and ceramics interact with stainless steel to accelerate corrosion, especially of the glass and ceramic materials holding nuclear waste. The study measured the difference between accelerate­d corrosion and natural corrosion of the storage materials. “In the real-life scenario, the glass or ceramic waste forms would be in close contact with stainless steel canisters. Under specific conditions, the corrosion of stainless steel will go crazy,” he said. “It creates a super-aggressive environmen­t that can corrode surroundin­g materials.”

To analyse corrosion, the research team pressed glass or ceramic “waste forms” (the shapes into which nuclear waste is encapsulat­ed) against stainless

A NUCLEAR WASTE STORAGE

steel and immersed them in solutions for up to 30 days, under conditions that simulate those under Yucca Mountain, the proposed nuclear waste repository in the U.S.

Those experiment­s showed that when glass and stainless steel were pressed against one another, stainless steel corrosion was “severe” and “localised”. The researcher­s also noted cracks and enhanced corrosion on the parts of the glass that had been in contact with stainless steel.

Part of the problem lies in the Periodic Table. Stainless steel is made primarily of iron mixed with other elements, including nickel and chromium. Iron has a chemical affinity for silicon, which is a key element of glass.

The experiment­s also showed that when ceramics, another potential holder for nuclear waste, were pressed against stainless steel under conditions that mimicked those beneath Yucca Mountain, the ceramics and stainless steel corroded in a “severe localised” way.

 ??  ?? facility in Idaho, United States.
facility in Idaho, United States.

Newspapers in English

Newspapers from India