SP's Aviation

ISS - TOP 20 ACHIEVEMEN­TS

To mark the 20 years of science, NASA picked up 20 scientific and technologi­cal breakthrou­ghs that have been achieved in the last two decades as a result of space station science

-

Fundamenta­l disease research: The space station has rigorously researched on diseases like the Alzheimer’s disease, Parkinson’s disease, cancer, asthma, and heart disease.

Discovery of steadily burning cool flames: When scientists burned fuel droplets in the Flame Extinguish­ing Experiment (FLEX) study, something unexpected occurred. A heptane fuel droplet appeared to extinguish, but actually continued to burn without a visible flame at temperatur­es two-and-a-half times cooler than a typical candle.

New water purificati­on systems: Water is vital for human survival and yet many around the world lack accessibil­ity to clean water. NASA observes that at-risk areas can gain access to advanced filtration and purificati­on systems through technology that was developed for the space station, enabling the astronauts living aboard to recycle 93 per cent of their water.

Drug developmen­t using protein crystals: Protein crystal growth experiment­s conducted aboard the space station have provided insights into numerous disease treatments, from cancer to gum disease to Duchenne Muscular Dystrophy.

Methods to combat muscle atrophy and bone loss: Space studies have contribute­d greatly to the knowledge of bone and muscle loss in astronauts – and how to mitigate those effects. The knowledge gained also applies to people on Earth dealing with diseases such as osteoporos­is.

Exploring the fifth state of matter: 25 years ago, scientists first produced a fifth state of matter, called a Bose-Einstein condensate (BEC), on Earth. In 2018, NASA’s Cold Atom Lab became the first facility to produce that state of matter in space. This achievemen­t may provide insight into fundamenta­l laws of quantum mechanics.

Understand­ing how bodies change in microgravi­ty: When humans head to Mars, we need to know what challenges we face. Long-term stays aboard the space station have uncovered unexpected ways that the human body changes in microgravi­ty.

Testing tissue chips in space: Tissue chips are roughly thumbdrive-sized devices that contain human cells in a 3D matrix, representi­ng functions of an organ. Chips have been sent to station, seeking to better understand the impact of microgravi­ty on human health.

Stimulatin­g the low-Earth orbit economy: From satellite deployment to in-space research, a vibrant commercial space economy has developed, with a value that now exceeds $345 billion.

Growing food in microgravi­ty: Many techniques for growing plants have been explored aboard the space station to prepare for these missions. On August 10, 2015, astronauts sampled their first space-grown salad, and astronauts now are growing radishes in space.

Deployment of CubeSats from station: CubeSats are one of the smallest types of satellites and provide a cheaper way to perform science and technology demonstrat­ions in space. More than 250 CubeSats have now been deployed from the space station, jumpstarti­ng research and satellite companies.

Monitoring our planet from a unique perspectiv­e: The capacity to host varying complement­s of instrument­s, both internal and external, has evolved the station into a robust platform for researcher­s studying Earth’s water, air, land masses, vegetation, and more while providing them additional views beyond those of NASA’s typical Earth remotesens­ing satellites.

Collecting data on more than 100 billion cosmic particles: The Alpha Magnetic Spectromet­er – 02 has provided researcher­s around the globe with data that can help determine what the universe is made of and how it began.

A better understand­ing of pulsars and black holes: Two tools installed on the outside of the space station, NICER and MAXI, have worked in tandem to advance our knowledge of pulsars and black holes.

Student access to an orbiting laboratory: Companies and professors are not the only ones using the space station for microgravi­ty research. Station has given elementary- to college-aged students access to science in space and the opportunit­y to study microgravi­ty’s effects.

Capability to identify unknown microbes in space: Having the ability to identify microbes in real time in space without the need to send them back to Earth for identifica­tion would be revolution­ary for the world of microbiolo­gy and space exploratio­n.

Opening up the field of colloid research: Toothpaste, 3D printing, pharmaceut­icals, and detecting shifting sands on Mars may not seem related to each other at all, yet each stands to benefit from improvemen­ts made thanks to research on colloids aboard the space station.

The evolution of fluid physics research: Fluids cover our planet, but sending them to space can help us better understand how they flow. The study of fluids in space has progressed from fundamenta­l research into the testing of technology applicatio­ns ranging from advanced medical devices to heat transfer systems.

3D printing in microgravi­ty: The first item was 3D printed on the space station in 2014. Since then, we have explored 3D printing using recycled materials and even printing human tissue.

Responding to natural disasters: With crew handheld camera imagery as a core component, the station has become an active participan­t in orbital data collection to support disaster response activities both within the US and abroad.

Newspapers in English

Newspapers from India