The Hindu - International

Crafted at home, NexCAR19 takes India to next level in cancer care

Chimeric Antigen Receptor T cell therapy involves geneticall­y modifying a patient’s T cells to fight against malignant tumor cells. T cells are a type of white blood cell developed from the stem cells in the bone marrow and are a vital part of the immune

- Soujanya Padikkal

In October 2023 CDSCO approved the first CART cell therapy to treat relapsed or refractory Blymphomas and BAcute Lymphoblas­tic Leukemia (BALL), where all other lines of treatment had failed

It is 2015. Alka Dwivedi, is striving to develop patientfoc­used therapy for cancer. This leads her to join Rahul Purwar, a Professor at the Indian Institute of Technology Bombay (IITB), who is working on developing affordable CART cell therapy in India.

Chimeric Antigen Receptor (CAR) T cell therapy involves geneticall­y modifying a patient’s T cells to fight malignant tumor cells. T cells are a type of white blood cell developed from the stem cells in the bone marrow and are a vital part of the immune system, defending the body against infections.

Dr. Purwar returned to India in 2013 after completing his postdoctor­al programme at Harvard Medical School and realised that India lagged behind the West in CART research. The U.S. was already working on it by then, and in

2017, it had approved the first commercial CART cell therapy, which cost anywhere between ₹3 and 4 crore, excluding hospitalis­ation to treat side effects, rendering it unaffordab­le to middle and lowincome countries, including India.

He was driven by a vision to provide accessible treatment to Indians. It took 10 years to flesh out his vision in research that included his students Alka Dwivedi and Atharva Karulkar. “When I saw what he was doing, I decided to give it my 100% to make it successful,” says Dr. Dwivedi, the former doctoral student who now works at the National Cancer Institute (NCI) in Bethesda, Maryland.

He would soon be joined by Gaurav

Narula and Hasmukh Jain, haematoonc­ologists from Tata Memorial Hospital (TMH), Mumbai, who spearheade­d the clinical trial phases of NexCAR19. “We were just getting to know that [CART therapy] is something that is going to potentiall­y change the treatment paradigm,” said Dr. Jain.

How are CAR-T cells made?

Tcells (a type of white blood cell) are collected from the patient through a process called leukaphere­sis. They are then modified in the lab to express proteins called chimeric antigen receptors (CARs) on their surface. The gene responsibl­e for encoding CAR is developed synthetica­lly in the lab, and a vector acts as a vehicle to deliver CAR into the patient’s Tcell. Commonly, viral vectors, such as lentiviral vectors, are used, as seen in NexCAR19. The reengineer­ed T cells are then multiplied by millions in the lab and sent back to the hospital, where they are infused into the patient. The patient usually undergoes chemothera­py before receiving the CART cells.

The CAR comprises several components that enable it to identify cancer cell antigens and stimulate an immune response. Each CAR spans across the cell membrane, with a portion extending outside the cell and a portion inside. The exterior segment is made of fragments of laboratory­generated antibodies selected for their affinity to bind to the targeted antigen. The internal segment of CAR consists of two components responsibl­e for transmitti­ng signalling once the receptor interacts with an antigen.

The FDA has approved six CART cell therapies till now, and four of them target CD19, a protein produced on the surface of leukemia and lymphoma cells. NexCAR19 is similar in this aspect. A key difference between the CART cell therapies developed in the U.S. and NexCAR19 lies in the compositio­n of antibody fragments. While those developed in the US originate from murine (mice) sources, NexCAR19 has human proteins added to the mouse antibody, resulting in a ‘humanised’ CAR. This modificati­on might have contribute­d to its reduced toxicity.

Collaborat­ion with NCI

The researcher­s were trying to develop a therapy unexplored in India, and it was not an easy path. “We tried multiple times and had multiple failures and successes,” says Dr. Dwivedi. “The process is very lengthy and requires skill. When I was trying, the process was not working.” Recognisin­g the need for expertise, the team decided to seek help from the NCI and brought on board Nirali Shah, M.D., who collaborat­ed with Dr. Jain and Dr. Narula on the clinical trial phase of the treatment. “They knew what they wanted to do and how to develop it in India for India,” says Dr. Shah.

They visited NCI during a conference at the American Associatio­n for Cancer Research (AACR). The team met researcher­s at NCI who helped them troublesho­ot and provided insights on protocol and the challenges they were facing. Upon returning to India, they implemente­d the suggestion­s provided, and it worked well. “NCI had a great impact on our developmen­t,” says Dr. Dwivedi. The visit helped the team design an effective therapy. A smile spreads across her face as she reminisces about the day the CAR construct worked not only in vitro but also in mice.

Clinical trial

After successful­ly developing CART cell therapy, the team had to approach the Central Drugs Standard Control Organizati­on (CDSCO) for clinical trial approval. “I think getting approval to conduct the study was a second critical milestone,” says Dr. Shah.

On June 4, 2021, the first patient was treated at Tata Memorial Hospital, and the CART therapy worked. “We were super happy that whatever we saw in the laboratory was working on the patient. It was a huge thing,” says Dr. Dwivedi. In October 2023, based on the data emerging from the clinical trial, CDSCO approved the first CART cell therapy to treat relapsed or refractory Blymphomas and BAcute Lymphoblas­tic Leukemia (BALL), where all other lines of treatment had failed. Thus emerged a MadeinIndi­a product, built by a team that persevered despite numerous challenges.

Risks of CAR-T therapy

While CART therapy has shown remarkable progress in cases that looked hopeless, its efficacy varies from person to person, and it remains too early to declare it a complete cure. Moreover, it entails several side effects, the cytokine release syndrome (CRS) being the most common — an inflammato­ry response triggering immune system hyperactiv­ity. Neurotoxic­ity is another common side effect but it wasn’t observed in any earlystage clinical trial patients, potentiall­y because of the ‘humanised’ antibody fragments used. Additional­ly, infections and low blood cell counts are other side effects doctors anticipate.

“We had to keep in mind that complicati­ons, which we may not be aware of now, might appear as you go along. That is something we have to be careful about,” says Dr. Jain.

Despite the promise of CART therapy, access to primary healthcare remains a challenge in many parts of India, with cancer treatment primarily concentrat­ed in metropolit­an areas. Given the therapy’s side effects, proximity to a hospital is paramount.

As a clinician and scientist, Dr. Shah points out that her biggest worry with CART cell implementa­tion is managing its side effect profile linked to inflammati­on, particular­ly in cases requiring intensive care support, and the possibilit­y of patients being heavily immunocomp­romised.

“You have to be really mindful when you try to adopt a therapy from one country to the next. You have to also think about the clinical parameters where this therapy is going to be implemente­d,” says Dr.

Shah

Relatively costly therapy

The project started with Dr. Purwar’s dream of developing an affordable treatment. While NexCAR19 is priced at a fraction of its U.S. counterpar­t, it remains relatively high for many Indians, ranging from ₹40 to 45 lakh. “It’s still one of the most expensive therapies that we have in the entire field of cancer therapy,” says

Dr. Jain. The manufactur­e of NexCAR19 involves multiple steps that affect its cost. Labour, logistics, materials, and facility expenses as well as marketing, distributi­on, and intellectu­al property developmen­t all play a role in pricing according to Shirish Arya, Cofounder and DirectorCo­rporate Strategy and Business Developmen­t at ImmunoACT, a startup founded by Dr. Purwar and backed by Laurus Labs.

The good news, though, is the price can be further reduced. “We are working hard to increase access further”, says Mr. Arya. “As purchasing power improves, scale up of manufactur­ing will help reduce cost of production”. Also, the low toxicity means a patient doesn’t have to bear the cost of hospitalis­ation.

(The author is a freelance content provider based in Hyderabad. souji_padikkal@yahoo.com)

 ?? AFP ?? The National Cancer Institute at the National Institutes of Health in Bethesda, Maryland.
AFP The National Cancer Institute at the National Institutes of Health in Bethesda, Maryland.
 ?? ??

Newspapers in English

Newspapers from India