The Sunday Guardian

RESEARCHER­S DISCOVER A NEW FORM OF ICE

- CORRESPOND­ENT WASHINGTON

Researcher­s have discovered a new form of ice, which could have implicatio­ns for our understand­ing of distant, water-rich planets. The findings of the study were published in the journal ‘Physical Review B’. Solid water, or ice, is like many other materials in that it can form different solid materials based on variable temperatur­es and pressure conditions, like carbon forming diamond or graphite. However, water is exceptiona­l in this aspect as there are at least 20 solid forms of ice known to us. A team of scientists working in UNLV’S Nevada Extreme Conditions Lab pioneered a new method for measuring the properties of water under high pressure. The water sample was first squeezed between the tips of two opposite-facing diamonds -- freezing into several jumbled ice crystals. The ice was then subjected to a laser-heating technique that temporaril­y melted it before it quickly reformed into a powder-like collection of tiny crystals.

By incrementa­lly raising the pressure, and periodical­ly blasting it with the laser beam, the team observed the water ice make the transition from a known cubic phase, ICE-VII, to the newly discovered intermedia­te, and tetragonal, phase, ICE-VIIT, before settling into another known phase, Ice-x.

Zach Grande, a UNLV PHD student, led the work which also demonstrat­ed that the transition to Ice-x, when water stiffens aggressive­ly, occurs at much lower pressures than previously thought. While it’s unlikely we’ll find this new phase of ice anywhere on the surface of Earth, it is likely a common ingredient within the mantle of Earth as well as in large moons and water-rich planets outside of our solar system.

The research team had been working to understand the behaviour of high-pressure water that may be present in the interior of distant planets. To do so, Grande and UNLV physicist Ashkan Salamat placed a sample of water between the tips of two round-cut diamonds known as diamond anvil cells, a standard feature in the field of high-pressure physics. Applying a little bit of force to the diamonds enabled the researcher­s to recreate pressures as high as those found at the centre of the Earth. By squeezing the water sample between these diamonds, scientists drove the oxygen and hydrogen atoms into a variety of different arrangemen­ts, including the newly discovered arrangemen­t, ICE-VIIT.

Not only did the first-of-itskind laser-heating technique allow scientists to observe a new phase of water ice, but the team also found that the transition to Ice-x occurred at pressures nearly three times lower than previously thought -- at 300,000 atmosphere­s instead of 1 million. This transition has been a highly debated topic in the community for several decades. “Zach’s work has demonstrat­ed that this transforma­tion to an ionic state occurs at much, much lower pressures than ever thought before,” Salamat said. “It’s the missing piece, and the most precise measuremen­ts ever on the water at these conditions.”

The work also recalibrat­es our understand­ing of the compositio­n of exoplanets, Salamat added. Researcher­s hypothesiz­e that the ICE-VIIT phase of ice could exist in abundance in the crust and upper mantle of expected water-rich planets outside of our solar system, meaning they could have conditions habitable for life. ANI

Newspapers in English

Newspapers from India