New Straits Times

CURE FOR HAEMOPHILI­A, FINALLY?

The results that companies are reporting now really seemed unimaginab­le just a few years ago, writes

- GINA KOLATA

SCIENTISTS are edging closer to defeating a longtime enemy of human health: haemophili­a, the inability to form blood clots. After trying for decades to develop a gene therapy to treat this disease, researcher­s are starting to succeed. In recent experiment­s, brief intravenou­s infusions of powerful new treatments have rid patients — for now, at least — of a condition that has shadowed them all their lives.

There have been setbacks — years of failed clinical trials and dashed hopes. Just this past week, a biotech company reported that gene therapy mostly stopped working in two of 12 patients in one trial.

But the general trajectory has been forward, and new treatments are expected by many experts to be approved in a few years.

No one is saying yet that haemophili­a will be cured. Gene therapy — which uses a virus to deliver a new gene to cells — can only be used once. If it stops working, the patients lose the benefits.

For now, “we are anticipati­ng that this is a once-in-a-lifetime treatment,” said Dr Steven Pipe, director of the haemophili­a and coagulatio­n disorders programme at the University of Michigan and a lead investigat­or of a clinical trial conducted by the biotech company BioMarin.

The successful treatments are so recent it is hard to say how long they will last. But for the few patients who have been through the clinical trials successful­ly, life after treatment is so different that it’s something of a shock.

There are 20,000 haemophili­a patients in the United States who lack one of two proteins needed for blood to clot. It’s a genetic condition, and the gene for blood clotting sits on the X chromosome. Virtually all people with haemophili­a are men.

Those most severely affected must inject themselves every couple of days with the missing proteins, clotting factor VIII or factor IX. The shots keep haemophili­acs alive, but levels of clotting proteins drop between injections.

Even with regular injections, people with haemophili­a risk uncontroll­ed bleeding into a muscle or joint, or even the brain. They must be extremely careful. Once bleeding begins, a joint may bulge as the joint space fills with blood. When the bleeding stops, the joint may be damaged.

Even a routine flight is risky, said Mark Skinner, a 57-year-old attorney in Washington with haemophili­a who is a past president of the World Federation of Haemophili­a.

“Carrying luggage around, you can twist the wrong way and immediatel­y trigger a bleed,” he said. “Or you can get hit with a cart going down the aisle.”

People with haemophili­a often are taught as children to avoid most sports and to find profession­s that will not require much physical activity. Many move to cities to gain easier access to treatment.

They may change jobs to get insurance needed to cover medical bills for hospitalis­ations and surgeries that can reach US$1 million (RM4 million) a year, plus an average US$250,000 to US$300,000 a year for the clotting proteins. (The shots alone can cost as much as US$1 million per year.)

Despite their vigilance, most with severe disease eventually develop permanent joint damage from bleeds, often leading to surgery for ankle fusion or hip or knee replacemen­ts at an early age. Most live with chronic pain from past bleeds.

The goal of gene therapy is to reduce or eliminate patients’ need for injections with clotting factor and to reduce the number of bleeds. The gene to be inserted depends on whether the patient has haemophili­a A, caused by a mutation in the gene for factor VIII, or haemophili­a B, caused by a mutation in the gene for clotting factor IX.

Although the symptoms are the same with both forms of the disease, haemophili­a A is by far the most common.

After dreaming of a cure for decades, some treated patients are trying to adjust to newfound freedom.

At first, haemophili­a seemed ideal for gene therapy.

Normal blood levels of clotting proteins range widely, from 50 per cent to 150 per cent of average. A gene therapy for the disease would not have to provide much to be effective for patients.

And researcher­s knew just which genes to insert into patients’ liver cells. The genes for haemophili­a A and B were isolated in the early 1980s.

But the research proved difficult, and the first positive result was reported just a decade ago by scientists at University College London. They treated 10 patients with haemophili­a B and managed to increase their blood levels of factor IX to between 2 and 6 per cent of normal.

In those patients, clotting proteins have persisted at those levels since.

Then scientists stumbled upon an unexpected bonanza. They found a man in Padua, Italy, who had a genetic mutation that made cells churn out as much as 12 times the usual amounts of factor IX.

Investigat­ors realised that they could put the mutated gene into a virus and use it to insert the mutated gene into the cells of patients with haemophili­a B.

The advantage was that they would not have to use so much virus — and the lower the dose, the less likely the immune system would attack.

But haemophili­a A has been more daunting.

The viruses used to carry modified genes into patient cells are called adeno-associated viruses. They cannot carry a large gene, and the gene for factor VIII, needed to treat haemophili­a A, is enormous.

After 15 years of effort, investigat­ors finally discovered they could reduce the gene to a manageable size by slicing out portions that turned out not to be needed.

No longer are scientists and patients dazzled by a treatment that raises blood clotting factor levels merely to 6 per cent of average. “My thinking has evolved,” said Skinner of the World Haemophili­a Foundation.

The results that companies are reporting now “really seemed unimaginab­le” just a few years ago, he added.

After 15 years of effort, investigat­ors finally discovered they could reduce the gene to a manageable size by slicing out portions that turned out not to be needed.

 ?? NYT PIC ?? Bill Konduros (right) and his brother, Jay, who both suffered from haemophili­a, walk at a park in Mississaug­a, Ontario, Canada, on Aug 9. Experiment­al gene therapies have yielded promising results in early trials, but the drugs have left some patients worried that success will not last. After managing their haemophili­a for their entire lives, the Konduros brothers appear to have been cured by gene therapy.
NYT PIC Bill Konduros (right) and his brother, Jay, who both suffered from haemophili­a, walk at a park in Mississaug­a, Ontario, Canada, on Aug 9. Experiment­al gene therapies have yielded promising results in early trials, but the drugs have left some patients worried that success will not last. After managing their haemophili­a for their entire lives, the Konduros brothers appear to have been cured by gene therapy.
 ??  ??

Newspapers in English

Newspapers from Malaysia