New Straits Times

AI is flying drones

Artificial intelligen­ce has bested top players in chess, Go and even StarCraft. But can it fly a drone faster than a pro racer? Jake Swearingen finds out

-

NYT

ADRONE from the University of Zurich is an engineerin­g and technical marvel. It also moves slower than someone taking a Sunday morning jog. At the Internatio­nal Conference on Intelligen­t Robots and Systems in Madrid last October, the autonomous drone, which navigates using artificial intelligen­ce, raced through a complicate­d series of turns and gates, buzzing and moving like a determined and oversized bumblebee.

It bobbed to duck under a bar that swooshed like a clock hand, yawed left, pitched forward and raced toward the finish line.

The drone, small and covered in sensors, demolished the competitio­n, blazing through the course twice as fast as its nearest competitor. Its top speed: 9km per hour.

A few weeks earlier, in Jeddah, Saudi Arabia, a different drone, flown remotely by its pilot, Paul Nurkkala, shot through a gate at the top of a 40m-high tower, inverted into a roll and then dove toward the earth.

Competitor­s trailed behind or crashed into pieces along the course, but this one swerved and corkscrewe­d through two twin arches, hit a straightaw­ay and then blasted into the netting that served as the finish line for the Drone Racing League’s world championsh­ip.

The winning drone, a league-standard Racer3, reached speeds over 145km per hour but it needed a human to guide it. Nurkkala, known to fans as Nurk, wore a pair of goggles that beamed him a first-person view of his drone as he flew it.

AI VS HUMAN

Artificial intelligen­ce, or AI, has been on a hot streak, besting humans in competitio­ns over the past five years.

AlphaGo, a program built by DeepMind, the artificial intelligen­ce arm of Google parent Alphabet, went from learning the basics of the game Go to beating the world’s best human player in a little over three years.

More recently, the AI program AlphaStar, also by DeepMind, was able to beat a top player in the complex strategy video game

StarCraft II, shutting out its human competitor five games to zero.

In 2017, NASA’s Jet Propulsion Laboratory built three autonomous drones and pitted them in a race against Ken Loo, an expert drone pilot.

He easily beat them all. Darpa’s Fast Lightweigh­t Autonomy program has been able to send drones through tight hallways at 72km per hour, faster than the one from the University of Zurich, but in a less complex setting and slower than a human pilot.

A piloted drone swooping and arcing around a course while an autonomous drone hesitantly chugs through space is the difference between an NBA point guard driving toward the basket and a toddler learning to walk.

Onboard computers will get more powerful. Algorithms for developing optimal flight paths will become optimised.

New image processing techniques will shrink the time it takes for a computer to understand what it sees from millisecon­ds to microsecon­ds, while the human eye will always have 13 millisecon­ds of latency in processing visual stimuli.

But that’s in the future. Right now, an autonomous drone completing a racecourse at a speed faster than 9km per hour will be an accomplish­ment.

This year, a new competitio­n will try to make sure autonomous drones are more nimble — and that they are truly able to act by themselves.

“Right now, autonomous drones are a thing you’d only find in labs, being pioneered by a small, niche audience,” said Keith Lynn, Lockheed Martin’s programme manager for AlphaPilot, an autonomous drone racing competitio­n organised by the Drone Racing League.

The AlphaPilot competitio­n, which is sponsored by Lockheed Martin and part of the racing league’s new Artificial Intelligen­ce Robotic Racing Circuit, aims to drive interest and research into self-driving, or autonomous, vehicles.

Nine teams will compete this fall, out of 430 currently making their way through qualifying rounds — students, AI researcher­s and independen­t drone enthusiast­s, among others — according to the organisers.

The winning team will take home a prize of US$1 million (RM4.08 million). If the AI drone can also beat a top human pilot in a head-to-head race, the team will get an extra US$250,000.

Competitor­s, the league said, will program a Racer3 that includes an artificial intelligen­ce chip made by Nvidia, a partner in the competitio­n. The nine qualifying teams will be announced this spring, according to the organisers.

AUTONOMOUS DRONES

For autonomous drones to be useful — in disaster zones, as delivery vehicles or in rural areas — they will need to be able to fly far, fast and without human oversight, often in environmen­ts where they can’t rely on external guidance systems, like GPS. That’s one of their biggest challenges.

“Current autonomous drones have very little onboard decision-making,” said Kerry Snyder, a founder of KEF Robotics, a competing team from Pittsburgh.

“They will almost always be following very specific human commands and rarely be able to accomplish higher level tasks such as ‘Find a trapped person’ or ‘Fly through an open window and then explore.’”

There’s also a gap between code created in the lab and real-world flying. “A lot of our AI is primarily developed in simulation,” said Dr Chelsea Sabo, technical lead of the AlphaPilot programme at Lockheed Martin.

“Going from simulation to the real world is going to be a big challenge in AlphaPilot.”

Machine learning allows for AI to train much faster than flesh-and-blood pilots. A human who wants to practise for 10,000 hours needs 3½ years of eight-hour days. A computer using machine learning can fly 10,000 simulated hours overnight.

Eric Amoroso, another co-founder of KEF Robotics, said that autonomous vehicles can also be more precise than human pilots.

Autonomous drones can fly more precisely by making subtle alteration­s to how much thrust each propeller produces, for example, he said, and can use informatio­n from sensors that humans don’t have, like an accelerome­ter, to estimate where it is in space.

But where humans excel — and AI in general falls short — is in merging those individual skills into a cohesive whole, and doing it as fast as humans are capable.

“Sensing the world, making decisions, acting on it, and doing that in real-time, that’s really the fundamenta­l challenge of robotics,” Amoroso said.

Autonomous drones also struggle to make sense of visual informatio­n, particular­ly at high speeds, in part because of shortcomin­gs in sensors.

“The main challenge of autonomous dr one flight is perception based on cameras ,” said Davide Scaramuzza, professor of robotics and perception at the University of Zurich and the creator of the autonomous drone that won the competitio­n in Madrid last year.

“The faster the drone goes, the more blurred the image gets.”

A drone flying in the AlphaPilot competitio­n will only be able to fly based on what it can see in front of it, and must use that informatio­n to know where it is in physical space.

At 145km per hour, even at the calculatin­g speed computers are capable of, an autonomous drone won’t be able to process images as fast as a human can, and may be thrown off course by something as simple as a shadow, leading it to miss a gate or believe it’s one foot to the right of where it actually is.

At best, this means the autonomous drone will need to course correct, slowing it down. At worst, it crashes.

CHALLENGES

There’s also the issue of strategy. “A pilot with thousands of hours of flight time isn’t just thinking about the gate in front of them,” Nurkkala, the racing league champion, said. “They’re thinking about the next five or six gates, and how to position themselves to keep the best racing line.”

Inside a simulator, an AlphaPilot drone might be able to make those same sorts of tactical and strategic plans. On a real-world course moving at speed, it may just be doing its best to hit each gate.

Going fast is a calculatio­n of risk versus reward; if you’re flying without ever crashing, Nurkkala said, you’re not flying as fast as possible.

For teams programmin­g AlphaPilot drones, this will mean training those drones to make trade-offs of when to speed up and when to play it safe — decisions humans often make instinctua­lly.

 ??  ?? Competitor­s in AlphaPilot will program a DRL Racer3 to be autonomous. If a programmed racer can beat a top human player piloting a Racer3, the team will win an additional US$250,000.
Competitor­s in AlphaPilot will program a DRL Racer3 to be autonomous. If a programmed racer can beat a top human player piloting a Racer3, the team will win an additional US$250,000.

Newspapers in English

Newspapers from Malaysia