The Star Malaysia - Star2

Survival tactics

Can sea life adapt to souring oceans?

- By Craig WelCh And that’s when things work well.

The violet bottom-dwelling, prickle-backed spheres wriggling in the tank in Gretchen hofmann’s lab aren’t really known for their speed.

But these lowly sea urchins adapt so quickly they’re helping answer a question that’s key to understand­ing ocean acidificat­ion: as fossil-fuel emissions disrupt marine life, will evolution come to the rescue?

Like Darwin’s finches or Britain’s peppered moths, these hedgehogs of the sea increasing­ly embody nature’s stunning capacity for resilience. A number of plants and animals threatened by souring seas, including some mussels, abalone, rock oysters, plankton and even a few fish, appear likely – at least at first – to adjust or evolve. But few seem as wired as these saltwater pincushion­s to come through the next several decades unscathed.

Yet, work with urchins, as well as other species, suggests that acidificat­ion sooner or later may still push these and other marine organisms beyond what they can tolerate.

“evolution can happen, and it can happen quickly,” said hofmann, a marine biologist at the University of California, Santa Barbara (UCSB), who has studied urchins for years. “But concerns about extinction­s are very real and very valid. Biology can bend, but eventually it will break.”

The oceans are absorbing a quarter of the carbon dioxide emitted by burning coal, oil and natural gas. That, researcher­s say, is causing sea chemistry to change faster than it has for tens of millions of years. Which plants and animals can accommodat­e these more corrosive seas – and for how long – will depend on many factors, from where they live to their population sizes to the depth of stress they face from other forces, such as warming temperatur­es and pollution. Survival will vary species by species. Not everything will make it.

“This kind of change is not free; evolution is not a gentle sport,” said Stephen Palumbi, an evolutiona­ry ecologist at Stanford University, who also works extensivel­y with urchins. “When evolution happens, it’s because the unfit are dying. It’s pretty brutal.”

In the late 2000s, commercial urchin fisherman Bruce Steele feared things would not go so well. And for good reason. Urchins graze on algae, drive out kelp and are eaten by sea otters, sunflower stars and humans.

Steele, a scuba diver, had made his living since the 1970s scooping the spiny delicacies off the sea floor to sell to sushi restaurant­s as uni. But when he read a research paper about acidificat­ion, he saw right away what it could mean for his business – and for the ocean he loved.

“When you start knocking out the very bottom of the food chain, it’s incredibly terrifying,” Steele said. “But that’s what the research is showing us.”

Increasing CO not only makes oceans more corrosive, it reduces carbonate ions, which everything from scallops to crabs, coral and sea urchins need to build shells or skeletons. So Steele dialed up hofmann, his local university expert on spiky echinoderm­s.

“She thought it was a crank call or something, because ... I don’t know,” Steele said. “I guess people figure a sea urchin diver’s not going to be reading a whole bunch of science.”

hofmann dismissed Steele at first, but quickly called back and started investigat­ing his concerns. She exposed sea urchin larvae to high-CO water and made a troubling discovery: their bodies often got smaller.

 ??  ?? adjusting to change: a female skin-diver in Japan displays a sea urchin collected from the sea off the coast of Shima in Mie prefecture. researcher­s at the University of california-Santa barbara are studying the creature’s adaptation to ocean...
adjusting to change: a female skin-diver in Japan displays a sea urchin collected from the sea off the coast of Shima in Mie prefecture. researcher­s at the University of california-Santa barbara are studying the creature’s adaptation to ocean...

Newspapers in English

Newspapers from Malaysia