New Zealand Listener

Antibiotic emergency

As common bacteria develop new strains resistant to our antibiotic arsenal, we face a future in which more people will die from previously treatable illnesses – and operations will be riskier.

- By Sally Blundell

As common bacteria develop new strains resistant to our antibiotic arsenal, we face a future in which operations will be riskier and more people will die from previously treatable illnesses.

It was a rogue branch of a rose bush, brushed away by Christchur­ch artist Simon Ogden while he was painting his house. He felt an initial sting where a thorn pierced his middle finger. “Then over a number of weeks it became a bit hard on the knuckle, nothing hurting but it restricted movement.” His GP’s initial attempt to remove the suspected thorn failed. Ogden was admitted to hospital, but after five operations and heavy doses of antibiotic­s, the infection persisted. “It was a tough four months; the hospital was fantastic, but I was exhausted. In the end, the doctor said, ‘We don’t know what it is, we will give it one more go, but we might have to take that part of your finger off.’” That one more go worked – eight years later, his finger is still fine.

Ogden was lucky. Antibiotic­s saved his finger and perhaps his life. Had the accidental prick happened in his grandfathe­r’s day, the infection could have spread, most likely necessitat­ing amputation, perhaps causing death.

Should it happen in the not-too-distant future, the outlook could be just as dire, as common bacteria develop new strains resistant to our antibiotic arsenal.

“There are already people living in the post-antibiotic era,” says Siouxsie Wiles, University of Auckland microbiolo­gist and author of the new book Antibiotic Resistance: The End of Modern Medicine? “There are people now having trouble with untreatabl­e organisms. They are not hugely prevalent, but the further in time we go, the more prevalent they will become.”

UK economist and chairman of the Review on Antimicrob­ial Resistance Jim O’Neill goes further. In a report on antimicrob­ial resistance – not just antibiotic resistance – published last year, he said that without urgent action, such resistance will kill 10 million people a year by 2050. “Already, at least 700,000 die each year of drug resistance in illnesses such as bacterial infections, malaria, HIV/Aids or tuberculos­is.”

The stakes are high.

Common surgical procedures such as appendecto­mies, caesarean sections and hip or knee replacemen­ts rely on antibiotic­s to prevent infection. Antibiotic­s are vital for those with compromise­d immunity as a result of organ transplant­s and chemothera­py; they also clobber a range of common diseases, including gonorrhoea, tuberculos­is and pneumonia. As Wiles writes, “Brace yourself.”

REDUCING THE DEATH TOLL

When Scottish scientist Alexander Fleming returned from holiday in 1928 to find a mould, a rare form of Penicilliu­m notatum, had killed off his cultures of staphyloco­cci, it seemed the path was clear to a new form of drug that would – and largely did – reduce the death toll from infectious disease.

But those bacteria were quick to fight back, acquiring mutations or stealing genes that confer resistance to antibiotic­s from other bacteria. By the 1950s, penicillin-resistant Staphyloco­ccus aureus, responsibl­e for a variety of illnesses ranging from boils and food poisoning to pneumonia, meningitis, blood poisoning and, in the case of the rare toxic shock syndrome, multiple organ failure, was causing outbreaks of disease in hospitals around the world.

In 1959, British pharmaceut­ical company Beecham developed a new beta-lactam antibiotic called methicilli­n – but strains of methicilli­n-resistant S aureus, or MRSA, were reported as early as 1961.

Enterobact­eriaceae, a family of opportunis­tic bugs that live in the gut, including Escherichi­a coli and Klebsiella pneumoniae, learnt to live another day by producing a penicillin-resistant enzyme called a beta-lactamase. In the 1960s, US pharmaceut­ical company Eli Lilly and Co introduced antibiotic­s called cephalospo­rins, which are impervious to beta-lactamase enzymes. But this favoured new mutant strains of the bacteria that produced enzymes called extended-spectrum beta-lactamases (ESBLs), able to destroy these antibiotic­s, too.

Each year, ESBL-producing strains of E coli and K pneumoniae are identified in thousands of New Zealanders. They can be treated with another class of antibiotic­s called carbapenem­s, but carbapenem-resistant bacteria are now on the rise.

Earlier this year, the US reported a woman had died after being infected with a strain of K pneumoniae resistant to 26 different antibiotic­s.

Similarly with tuberculos­is. Since the discovery of antibiotic­s capable of killing Mycobacter­ium tuberculos­is in the 1950s, new multi-drug-resistant TB (MDR-TB) and now extremely drug-resistant TB (XDR-TB) have developed. With every new “super bug”, treatment options diminish.

“Every time a new type of antibiotic was taken up, resistant microorgan­isms emerged and spread like a wave,” writes Wiles. “But there was always another antibiotic on the shelf, so we’d start using that one, and the cycle would repeat itself. The waves of resistance have now become a tsunami, and for some resistant microorgan­isms, we’ve no treatments left.”

INCREASED USE

“The waves of resistance have now become a tsunami, and for some resistant microorgan­isms, we’ve no treatments left.”

The more we use antibiotic­s, the more chance there is for bacteria to develop antibiotic-resistant strains. The global Center for Disease Dynamics, Economics and Policy (CDDEP) reports that between 2000 and 2010, the world’s intake of antibiotic­s increased from 50 billion to 70 billion standard units (the smallest dose given to a patient, so one pill or capsule).

New Zealand has played its part, with antibiotic use here increasing by almost half between 2006 and 2014. Of OECD and some other European countries, we now rank in the top third, beaten only by Romania, France, Italy, South Korea, Belgium and Luxembourg.

Recent research from the University of Auckland’s longitudin­al study of child developmen­t, Growing Up in New Zealand, shows more than nine out of 10 children are exposed to antibiotic­s by the age of three. Almost all children (97%) have had antibiotic­s by the time they are five.

Why? For a start, they work – as a first line of attack against infectious diseases they generally do the job. And antibiotic­s, particular­ly off-patent ones, are cheap – cheaper than improving hygiene and infection control in hospitals, cheaper than sanitation, cheaper than ensuring access to clean water or warm homes and cheaper than rolling out vaccine programmes.

Sometimes, they are prescribed as a precaution­ary measure, when the actual cause of an illness is unknown. This is understand­able as symptoms of many infections are indistingu­ishable – a rash could be a mild viral infection or a sign of the potentiall­y fatal meningococ­cal bacteria. That chesty cough could be a sign of bacterial pneumonia or viral bronchitis. More worrying is the use of non-prescribed antibiotic­s, shared between family and friends and often taken for conditions they can’t treat – such as flu viruses – or conditions that will clear up unaided, such as some forms of food poisoning.

The use of broad-spectrum antibiotic­s, rather than the more bacteria-specific narrow spectrum, is convenient – they often have fewer side effects, children usually prefer them because they taste better and you don’t always have to take them with food.

But broad-spectrum antibiotic­s, writes Wiles, can be “the equivalent of burning down a forest to get rid of one tree. They’ve wiped out many beneficial bacteria and given antibiotic-resistant strains the opportunit­y to evolve and dominate. In cases like these, the antibiotic-resistant bacteria don’t make you ill. They just live on or inside you and spread to others in your community.”

The more antibiotic­s we use, the more opportunit­y we give to these diseases to develop and favour mutant antibiotic­resistant strains. But not taking the full course of antibiotic­s is also risky. If bacteria are exposed to an inadequate dose, instead of quickly killing them, the antibiotic puts them under stress, so they make more mutations, boosting the chance of their becoming resistant. As Fleming warned in his 1945 Nobel Prize lecture, in making penicillin too widely available, “The ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug, make them resistant.”

We need to take note. As countries become more developed, they tend to have lower rates of infectious diseases, but New Zealand is heading in the opposite direction.

In 2013, more than two-thirds of our infectious-disease hospitalis­ations were for bacterial infections, most commonly S aureus, Streptococ­cus pyogenes and food- and waterborne infections caused by various organisms.

We are topping the charts for many of them. Our rates of S aureus, or “staph”, are the highest in the developed world – and rising. Similarly, S pyogenes, or Group A strep – a common cause of sore throats and tonsilliti­s. This virulent bacterium can also cause a variety of illnesses, including skin and softtissue infections, scarlet fever, toxic shock syndrome, childbed fever and the infamous “flesh-eating bug” Post-streptococ­cal glomerulon­ephritis. This “truly terrifying disease”, as Wiles describes it, often requires surgery and sometimes amputation to stop its spread.

Between 2002 and 2012, almost 3000 people – most of them under five or over 70 – were hospitalis­ed with a S pyogenes infection.

Our rates of rheumatic fever, typically developing in reaction to an S pyogenes infection, doubled between 2005 and 2010, most commonly affecting Maori and Pasifika children aged from five to 14. This has prevented us from running education programmes to reduce the spike in GP visits and antibiotic­s in winter when seasonal respirator­y-tract infections, mostly caused by viruses impervious to antibiotic­s, are at their peak.

“Other countries have tried to solve that misprescri­bing over winter months, saying if you have a sore throat it is just a virus, don’t go to the doctor,” says Wiles. “But in New Zealand, it might be strep throat, and with our rates of rheumatic fever, there really is a need to treat it.”

GONORRHOEA ON THE RISE

Our rates of campylobac­teriosis are also among the highest in the developed world.

On Friday, August 12, last year, 13 people turned up at Hawke’s Bay Regional Hospital’s emergency department with symptoms of gastrointe­stinal illness. By Monday, another 68 had gone to the emergency department, and 70% of staff and students were absent from the town’s schools. By the end of the outbreak, an estimated 5530 Havelock North residents had had symptoms of campylobac­teriosis, apparently floored by a water supply contaminat­ed with Campylobac­ter jejuni, a helical-shaped bacterium commonly found in animal faeces. Forty-five people ended up in hospital, and two died.

Cases of the sexually transmitte­d disease gonorrhoea are also rising. Although not notifiable in New Zealand, best estimates, says Wiles, put our rate at 70 per 100,000 people in 2014, mostly in the 15-29 age group. Already, as new antibiotic-resistant strains emerge, it is a struggle for once commonly used treatments to control the disease. “Once these antibiotic­s stop working,” says Wiles, “the options are very limited.” According to the World Health

New Zealand’s rates of Staphyloco­ccus aureus, or “staph”, are the highest in the developed world – and rising.

Organisati­on (WHO), 10 countries have confirmed the failure of third-generation cephalospo­rin, one of the treatments of last resort for gonorrhoea.

Chlamydia trachomati­s, transmitte­d during vaginal, anal and oral sex and able to be passed by an infected mother to her baby during childbirth, is twice as common in this country as it is in Australia and the UK. Without antibiotic­s, about half of asymptomat­ic women will go on to develop pelvic inflammato­ry disease and, for men, painful swelling of the testicles and epididymis as well as reactive arthritis and infertilit­y.

THE ART OF PREVENTION

“Without urgent, co-ordinated action,” said Dr Keiji Fukuda, WHO’s assistant directorge­neral for health security, “the world is headed for a post-antibiotic era, in which common infections and minor injuries which have been treatable for decades can once again kill.”

Most of our infectious diseases are treatable. Only about 4% of the 29,636 people who died in 2013 had infectious diseases listed as the cause of death. But as new antibiotic-resistant strains of bacteria emerge, we have to look further. New Zealand has made a commitment to the WHO to have a national strategic antimicrob­ial resistance action plan in place by next month, and a cross-agency group is working on it.

As those living in cold, damp, overcrowde­d homes carry the burden of many of these diseases, the need to address poverty and ensure access to affordable, warm, dry housing is becoming even more urgent.

Wiles is also calling for more education on the use and misuse of antibiotic­s.

In her book, she quotes a survey of people of Samoan descent that found two-thirds thought antibiotic­s were for pain relief, most thought they were a useful treatment for colds and the flu, and many said they stopped taking them before finishing the course. Similar studies show those from countries where it is easier to get antibiotic­s without a prescripti­on “are more likely to have misconcept­ions about what they are useful for”.

Our high rates of chlamydia can be reduced through the use of condoms and dental dams during sex, but in a recent survey, fewer than half of sexually active young people reported using condoms. Sexually transmitte­d infection is part of sexuality education in the curriculum, says

 ??  ??
 ??  ?? Scottish scientist Sir Alexander Fleming. Below, the original culture of his groundbrea­king Penicilliu­m notatum discovery.
Scottish scientist Sir Alexander Fleming. Below, the original culture of his groundbrea­king Penicilliu­m notatum discovery.
 ??  ??
 ??  ??
 ??  ?? University of Auckland microbiolo­gist and author Siouxsie Wiles. Left, World Health Organisati­on assistant director-general for health security Dr Keiji Fukuda.
University of Auckland microbiolo­gist and author Siouxsie Wiles. Left, World Health Organisati­on assistant director-general for health security Dr Keiji Fukuda.
 ??  ??

Newspapers in English

Newspapers from New Zealand