Otago Daily Times

Possible cures for flygskam on the way

- Gwynne Dyer A Gwynne Dyer is an independen­t London journalist.

QANTAS, the Australian airline, has just testflown the world’s longest commercial airroute: 16,500km from New York nonstop to Sydney.

There were only 60 passengers aboard the Boeing 787, all in business class, because the plane needed all the rest of the weight for fuel. And, we are told, they danced the macarena in the empty economy class to stay limber during the 19hour flight.

I don’t think Greta Thunberg would have been pleased.

There is a Swedish neologism, ‘‘flygskam’’, that has gained some currency among environmen­tal activists in Europe. It means ‘‘flightsham­e’’, which is the emotion righteous people should feel if they take a plane trip and contribute to global heating.

Ms Thunberg took a sailboat across the Atlantic because the fuel that is burned to get each airline passenger across the Atlantic causes warming equivalent to about 10% of the average Swede’s annual carbon footprint. A bit dramatic, maybe, but her point was that flying causes major emissions, and the only way to avoid them is not to fly.

Aviation accounts for about 2.5% of humancause­d greenhouse gas emissions at the moment, but the contrails the planes leave in the stratosphe­re turn into cirrus clouds that reflect heat back to the surface, and that causes an equal amount of heating.

So in reality, 5% of current warming is already due to aviation, and industry representa­tives estimate that the number of people flying annually will almost double (to 8.2 billion) in the next 20 years. By then, flying will have grown to 10% of the global heating problem, or even more if we have made good progress on cutting our other emissions. So must we stop flying?

That’s not the way we deal with other climaterel­ated transport problems. We haven’t abolished automobile­s; we have just worked on ways of reducing and ultimately eliminatin­g the emissions associated with them. Electric cars now lead the field, but other alternativ­es may emerge.

By contrast, we are told, there are no alternativ­es available for aviation.

People have been nibbling around the fringes of the fuel problem, but biofuel won’t cut it: it would take an area the size of Australia to grow the plants needed as feedstock for the fuel that the aviation industry consumes. Batteries are too heavy to use in electric planes, and there’s no solution for the contrail problem. We’ll just have to stop flying.

Not necessaril­y. The problem has been neglected, because the aviation industry was too lazy or stupid to look down the road and start preparing for a future that more attentive people could see 20 years ago. But the fuel problem is not insoluble. In fact, it has already been solved. The solution just needs to be scaled up.

A number of people have been working on DAC (direct air capture of carbon dioxide) for more than a decade already, and the leader in the field, David Keith’s Carbon Engineerin­g, has had a pilot plant running in British Columbia for the past three years.

Keith’s business model involves combining his captured carbon dioxide with hydrogen (produced from water by electrolys­is). The electricit­y for both processes comes from solar power, and the final product is a highoctane fuel suitable for use in aircraft.

It emits carbon dioxide when you burn it, of course, but it’s the same carbon dioxide you extracted from the air at the start. The fuel is carbonneut­ral. Scaling production up would take a long time and cost a lot, but it would also bring the price down to a commercial­ly viable level.

The contrails and the cirrus clouds in the stratosphe­re are a considerab­ly harder problem, but there are a number of measures that would help.

The planes are flying so high for two reasons. The air is less dense up there, so you don’t use so much fuel pushing through it. But the main reason, especially for passenger planes, is that there is much less turbulence in the stratosphe­re than in the lower atmosphere. If the planes flew down there, they’d be bouncing around half the time, and everybody’s sickbag would be on their knees.

So what can you do about it? Well, contrails only form in air masses with high humidity, and therefore affect only 10% to 20% of flights. With adequate informatio­n, most of those flights could simply fly around them. Alternativ­ely, fly below 7620m for that section of the flight and contrails won’t form anyway.

It will be more turbulent down there, so in the long run we should be building aircraft that automatica­lly damp out most of the turbulence.

This is probably best achieved by ducted flows of air that instantly counter any sudden changes of altitude or attitude, but if aircraft designers started incorporat­ing such ducts into their designs today, they’d only come into regular use in about 15 years’ time.

So the order of business is first, carbonneut­ral fuels (half the problem solved); second, flying around or under air masses with high humidity (another quarter solved); and finally, turbulence­damping aircraft technology (most of the rest done).

By the way, how is Greta Thunberg getting home again?

 ?? PHOTO: GETTY IMAGES ?? Aviation accounts for about 2.5% of humancause­d greenhouse gas emissions at the moment.
PHOTO: GETTY IMAGES Aviation accounts for about 2.5% of humancause­d greenhouse gas emissions at the moment.
 ??  ??

Newspapers in English

Newspapers from New Zealand