The Timaru Herald

Your ancient origins may surprise you

Regardless of what we look like, Glenda Lewis writes, our ancestral home was Africa.

-

Aotearoa was the final destinatio­n of a very long journey that began in Africa more than 65,000 years ago. Whether you’re a redheaded country music singer in Gore or a Filipino dairy worker in Dannevirke, your ancestral homeland is Africa.

When a small band of modern humans filtered out of Africa into Europe and Asia, they encountere­d other human types who had arrived there hundreds of thousands of years before. Our new breed of taller, seemingly more savvy and better equipped men and women co-existed with Neandertha­ls for at least 10,000 years before they died out, whether through force or happenstan­ce.

Our common ancestor was Homo erectus. We were not yet so different from Neandertha­ls that we couldn’t interbreed. The encounters were rare and rarely productive but neverthele­ss, everyone today who is NOT of pure African descent carries a small percentage of Neandertha­l DNA, about 2 per cent – slightly more in Asian population­s who seem to have had additional, later encounters. Those Neandertha­l jokes about our colleagues and former boyfriends have rebounded on us.

This genetic legacy has given us some good and bad traits, such as stronger hair and skin, a predisposi­tion to type 2 diabetes and Crohn’s disease, and increased risk of nicotine addiction. Apparently Neandertha­ls shared our on/off faculty for appreciati­ng the defining note of pinot noir and violets, a compound called beta ionine. A single nucleotide difference (a basic component of DNA) distinguis­hes the active and inactive version of the gene.

The first scientist to think of using difference­s in our DNA to trace our origins and relatednes­s grew up on a farm in Pukekohe.

The late, great NZ scientist, Allan Wilson, who should be a household name here, spent his adult life in America, based at the University of California, Berkeley. He died in 1991 from leukaemia, aged 56. Wilson deduced that chimpanzee­s and the first human species diverged from a common ancestor only five to seven million years ago, not about 30m as previously thought – a bit too close for comfort for some.

It caused a bitter controvers­y at the time, and not just among evolution deniers. Scientists are human too, and not always objectivel­y ‘‘sapiens’’. Reputation­s become nailed to old masts.

Wilson led a group of evolutiona­ry biologists who realised that we could reconstruc­t human history by studying markers in our mitochondr­ial DNA (mtDNA), which is inherited lock, stock and barrel from mother, and not mixed up with father’s DNA when sperm meets egg. Every so often, a spelling mistake, known as a mutation, is made when the DNA is being copied. Once a mutation occurs, it is then passed on to all future generation­s.

These mtDNA mutations rarely have any effect on the person. Wilson and his team realised that if they looked at mtDNA from people around the world, they could compare the DNA and draw a family tree, identifyin­g when and where these mutations occurred. The different mtDNA lineages could be used to trace the movement of population­s across the globe.

They calculated that all humans alive today trace their origin back to one woman – socalled Mitochondr­ial Eve – who lived in Africa a mere 150,000 years ago. This doesn’t mean that she was the only woman on Earth at the time, but that all other lines have since become dead ends, literally.

The different branches of the mitochondr­ial family tree are labelled by letters, with each branch defined by a particular mutation or combinatio­n of mutations.

The oldest lineages are the L branches, which are found only in African population­s. About 65,000 years ago, a small group of humans carrying the L3 lineage left Africa, probably through what is now Egypt. This group soon split and the mutations occurred that define the two main non-African lineages, the M and N branches. Women carrying the N lineages gave rise to all European lineages, with the most common branches found in Western Europeans today being H, U, J, T, K, V, and X. These seven Western European maternal ancestors inspired the book The Seven Daughters of Eve by Bryan Sykes. He named these clan mothers Helena, Ursula, Jasmine, Tara, Katrine, Velda and Xenia.

While Helena, Ursula, Jasmine and the girls went north, some of our ancestors headed east and moved very quickly through southern Asia, towards the Pacific. They could walk through what is now Island Southeast Asia when ice ages locked up massive volumes of water and sea levels fell. Recent research suggests that they arrived in Australia and New Guinea, which were joined in a super-continent called Sahul, as early as 60-65,000 years ago. Aboriginal Australian­s and Papuans have been geographic­ally and geneticall­y isolated for a very long time. It was a one-way journey for them. These people carried mtDNA lineages belonging to the M branch, as well as some N lineages.

On those early forays into Asia, it seems we also interbred with another group of long-separate Homo erectus descendant­s called Denisovans, after the cave in Siberia where the relics of these people were miraculous­ly discovered – part of the finger-bone of a small girl and a few teeth – amidst tonnes of rock and dirt. These treasured remains were so well preserved that scientists were able to sequence the entire genome (the complete set of an organism’s DNA). Those first modern humans who travelled through Asia clearly ran into Denisovans on the way. Their descendant­s today, including Aboriginal Australian­s the punch line now. We are as diverse a population as you’ll find anywhere. Kiwis carry all of the major mitochondr­ial DNA diversity seen in the world – lineages A to Z.

The history of human evolution and migration is one of the fastest moving areas of science. New findings, such as fossils of the diminutive Homo floresiens­is (the hobbit people), are coming thick and fast and adding intriguing subplots to the main storyline.

We have an insatiable desire to know about our past. Genealogy is big business. But while DNA is hard evidence of our origins, relatednes­s, and some of the routes taken by our ancestors, it is only part of the story and actually reveals very little about who we are. New Zealanders are not defined by their DNA or bound in spirit by genetic similarity.

What we do share in common are the long journeys we and our forebears risked to come here, whether by waka, sailing ship or Boeing 777, to escape depression and social immobility in Britain, Pol Pot’s genocide, wars in Europe and the Middle East, or in search of adventure and a better life.

Our ancestors, all 6000 generation­s since Mitochondr­ial Eve, were survivors and we are their testament.

Next week: Who were the first New Zealanders? How many were there, and where did they come from?

Informatio­n and research provided by Professor Lisa Matisoo-Smith FRSNZ, University of Otago.

 ?? MARTIN DE RUYTER/STUFF ?? Professor Lisa Matisoo-Smith hands out DNA test kits to 50 people in Nelson after introducin­g the audience to the Allan Wilson Centre project The Longest Journey from Africa to Aotearoa.
MARTIN DE RUYTER/STUFF Professor Lisa Matisoo-Smith hands out DNA test kits to 50 people in Nelson after introducin­g the audience to the Allan Wilson Centre project The Longest Journey from Africa to Aotearoa.
 ?? PALEOANTHR­OPOLOGY GROUP MNCN-CSIC ?? Skeleton of the Neandertha­l boy recovered from the El Sidron cave, Spain.
PALEOANTHR­OPOLOGY GROUP MNCN-CSIC Skeleton of the Neandertha­l boy recovered from the El Sidron cave, Spain.
 ?? SUPPLIED ?? Biological anthropolo­gist Professor Lisa Matisoo-Smith is researchin­g the genetic make-up of Kiwis.
SUPPLIED Biological anthropolo­gist Professor Lisa Matisoo-Smith is researchin­g the genetic make-up of Kiwis.

Newspapers in English

Newspapers from New Zealand