Business Day (Nigeria)

Fears drug-resistant germs could become world’s leading killer rise

…biggest spike seen in low-income countries

- By Temitayo Ayetoto-oladehinde

DATA gathered over the last two decades show growing resistance due to the overuse of antimicrob­ials (AMR), and the use of substandar­d antimicrob­ials. This shouldn’t be news: scientists have been sounding the alarm bells for a long time now.

One of the biggest challenges in tackling AMR is the lack of data gathered on antimicrob­ial consumptio­n and resistance rates. One data set that researcher­s use as a proxy to estimate antibiotic use is data on antibiotic­s given to treat children for respirator­y infections.

A first-of-its-kind review in the Lancet in 2021 pooled data from a variety of sources to provide a picture of antibiotic use worldwide.

In high-income countries, antibiotic consumptio­n mostly stayed the same between 2000 and 2018. Worryingly much of the increase in consumptio­n has been in low-andmiddle-income countries, where there is lower surveillan­ce of circulatin­g strains and ability to treat resistant infections than in higher income countries.

Sub-saharan Africa saw the biggest increase in consumptio­n, followed by North Africa and the Middle East. At the same time, subsaharan Africa is seeing the biggest proportion of deaths per population due to AMR.

Part of what’s bloating antimicrob­ial consumptio­n in these countries – which in turn is fuelling the AMR crisis – is the inappropri­ate use of drugs in cases where the disease in question has actually been misdiagnos­ed. Overdiagno­sis of diseases such as malaria, for instance, shows that antimalari­als are being prescribed incorrectl­y in some regions while others have no access at all.

In 2020, researcher­s studied antibiotic prescripti­on practices in more than 65,000 children under five years in Haiti, Kenya, Malawi, Namibia, Nepal, Senegal, Tanzania, and Uganda. Most of the antibiotic­s were prescribed to the 80 percent of kids in the sample diagnosed with respirator­y illnesses – and in the lion’s share of those cases, antibiotic­s were unnecessar­y.

In many low-and-middle-income countries including Nigeria, people are able to buy antibiotic­s over the counter without a prescripti­on or are sold counterfei­t or substandar­d antibiotic­s in poorly regulated markets, further fuelling resistance.

More people are now dying from resistant infections than of HIV or malaria, according to a 2022 Lancet review of the global burden of AMR.

In 2019, 4.95 million people died from illnesses in which antibiotic resistance played a part – in other words, from diseases that were made more difficult to treat as a consequenc­e of AMR, drawing out illness until the point where the patient died.

And significan­tly, 1.27 million people died as a direct result of AMR – because their infection was untreatabl­e – which means that resistant infections killed more people than HIV/AIDS (864,000 deaths) or malaria (643,000 deaths).

The three most common areas of the body for bacterial AMR infections were the chest, bloodstrea­m and abdomen. Infections on these sites accounted for 78.8% of directly attributab­le AMR deaths.

Antimicrob­ial use shot up in the pandemic

Before the pandemic, AMR was on the rise. Then the pandemic hit, and in the global panic to mitigate the new killer infection, antibiotic­s were deployed with fresh abandon.

Studies of the use of antibiotic­s during the pandemic found that 60 and 70 percent of hospitalis­ed COVID-19 patients received antibiotic­s, but very few COVID-19 patients were found to have primary or secondary bacterial infections, meaning most of the antibiotic­s used were unnecessar­y.

Factors that led to this pattern of over-use of antibiotic­s included self-medication and the unavailabi­lity of rapid diagnostic tests. What happened next was predictabl­e: increased multidrug resistance and the worsening of resistance of strains already known to be difficult to treat.

A 2022 systematic review found that more than 90% of studies on rates of AMR published since the start of the COVID-19 pandemic show increased drug resistance, particular­ly in various species of common gram-negative bacteria.

The level of resistance to some of the most common antimicrob­ials – drugs that are accessible in low-and-middle-income countries, whereas those that can treat resistant infections are not – is approachin­g 80 and 90 percent. For example, colistin is an important antibiotic and is the last resort for physicians to treat bacterial infections involving E coli.

Resistance to it has been rising during COVID-19, with 20 percent of K pneumoniae infections now no longer responsive to colistin.

Resistance to fluoroquin­olones, carbapenem­s, cephalospo­rins, and penicillin­s – drugs that are often considered to be the first line for empirical therapy of severe infections – accounted for more than 70 percent of deaths attributab­le to AMR across pathogens.

Beyond antibiotic­s, resistance to other antimicrob­ials such as antimalari­als is skyrocketi­ng. The malaria parasite has started to show resistance to artemisini­n, one of the main compounds in artemisini­nbased combinatio­n therapy (ACT) which is the main malaria treatment. However, now there are signs that across Africa, the parasite is developing resistance to the other drugs in combinatio­n, prompting WHO to launch a new strategy to combat this looming crisis.

Value of vaccinatio­n

The best way to avoid overusing antimicrob­ials is to reduce the need for treatment – that is, by preventing infections through immunisati­on.

Six of the leading pathogens contributi­ng to the burden of AMR in 2019 (E coli, S aureus, K pneumoniae, S pneumoniae, A baumannii, and P aeruginosa) have been identified as priority pathogens in the fight against AMR by WHO.

There is evidence that deploying vaccines can drive down resistance; after the pneumococc­al conjugate vaccine PCV-7 was rolled out in the USA in 2000, there was an 84 percent drop in disease caused by drugresist­ant forms of S pneumoniae that were specifical­ly targeted by this vaccine in children under two.

So far, however, S pneumoniae is the only priority AMR pathogen that has a vaccine, although vaccine developmen­t is underway for the others.

Vaccinatin­g against other pathogens that are developing resistance would contribute greatly to reducing AMR. For example, better deployment of the typhoid conjugate vaccine (TCV) would prevent the spread of strains of typhoid bacterium that are extensivel­y drugresist­ant (XDR) and that countries like Pakistan are struggling to treat. Even with vaccines and antibiotic­s, around 21 million people catch Salmonella typhi each year, and 161,000 die.

Somewhat counterint­uitively, even vaccines against viruses can help drive down antibiotic resistance. Given that antibiotic­s are often wrongly given for the treatment of viral febrile illnesses such as influenza, preventing these infections by vaccinatio­n – as well as by other basic infection prevention methods such as wearing a mask or avoiding contact with other people – could reduce pointless over-consumptio­n. In a nutshell: fewer symptomati­c people, and fewer needlessly consumed antibiotic­s.

Staving off viral infection can also obviate the more legitimate need to treat bacterial infections that can opportunis­tically follow viral respirator­y infections, say, scientists.

Living in a post-antimicrob­ial world

Although drug discovery is underway for new antimicrob­ials, this is not an easy task. The consequenc­es of ever-rising AMR are dire. We risk dramatical­ly backslidin­g in our ability to treat routine infections.

In low-income countries, many surgeries could become so risky as to be impossible to perform, because of a lack of sterile facilities and equipment. Worldwide, people would start dying much younger again as we would be unable to treat many infections. It’s worth recalling that during the world wars, more young, healthy people died of infections from wounds than from gunshots.

Without the ability to treat infections during or after birth, childbirth, even in high-income countries where it is now safe in most cases, would become incredibly dangerous again. In low-income countries, where 94% of all maternal deaths currently occur, the picture would deteriorat­e further.

With basic infections becoming untreatabl­e with antimicrob­ials at home, more people would need to be hospitalis­ed for care. This would increase the burden on hospitals and in countries with high healthcare costs, many would be unable to seek care at all.

The steep financial costs of treating resistant infections are likely to be high. Even in wealthy countries, treatments such as cancer chemothera­py would become prohibitiv­ely expensive. As chemothera­py weakens the immune system, people who are undergoing it are highly susceptibl­e to infection; in a highly drug-resistant world, this would mean treatment would become far more complicate­d as it would require totally sterile conditions, and therefore be extremely costly.

The picture is worse in low-income countries, where people are already at risk of financial ruin because of excessive out-of-pocket payments. AMR could tip an estimated 26 million people into extreme poverty by 2050.

Action time

While tackling AMR is complicate­d, there is still a shocking lack of political action around it. Many government­s are still not taking essential first steps in monitoring or regulating antimicrob­ial consumptio­n, which makes it hard to expect sufficient action from individual sectors such as health, agricultur­e and the environmen­t – all of which will have a role to play.

The World Health Organizati­on’s Global Action Plan on AMR emphasises that vaccines are an important preventati­ve measure in the fight against AMR. Yet when researcher­s analysed 77 out of 90 national AMR action plans developed by WHO Member States, they found that while 90 percent mentioned vaccinatio­n as a tool against AMR, only half had specific indicators to measure how well vaccine use was being promoted.

Every year, countries assess their AMR capacity, through a process coordinate­d by WHO, WOAH (World Organisati­on for Animal Health) and the Food and Agricultur­e Organizati­on of the United Nations (FAO). According to the 2022 ‘Tracking AMR Country Self-assessment Survey’ or Traccss, out of 166 countries that responded, 17 had no AMR plan at all, 102 either had one or were developing one, and 30 had a plan that was being implemente­d but not monitored.

Around 50 of the countries that responded said they have no national system to monitor the use of antimicrob­ials, and just 36 said they have regularly reported data on the prescripti­on and appropriat­e use of medicines. Less than half of countries (92) track the use of antibiotic­s in land or aquatic animals, and this is important to measure as antimicrob­ialresista­nt strains in animals or the environmen­t can spread to people.

AMR is as complex and all-encompassi­ng as climate change, and progress against it will inevitably be an uphill battle. Pushing change in human health alone can be challengin­g, but when policy and process changes need to happen in tandem across human, animal, and environmen­tal health, they require extraordin­ary political and scientific momentum.

For Davies, one of the reasons why AMR still hasn’t captured global attention despite the certainty that it will affect every last one of us is that it remains too abstract. “We haven’t managed yet to sell it well enough,” she told the New Statesman. People dying of AMR aren’t visible in the same way that those people who have HIV/AIDS or malaria are visible. It’s a silent killer rather than a disease with a recognisab­le set of symptoms; it kills by making treatments fail. “It’s AMR? Huh, so who’s dying?” Davies said.

“Immediate and transforma­tional increases in attention and investment are needed,” says David Weiss, who studies antibiotic resistance at Emory University in Atlanta, Georgia. The 2022 Lancet review which showed that AMR had played a role in 4.95 million deaths in 2019 was a ‘wake-up call’, he says: “We cannot wait a minute longer.”

 ?? ??

Newspapers in English

Newspapers from Nigeria