THISDAY

Genetic Disorders in Man

- Chromosome­s: Genes Causes Single Gene Disorders Multiple Genes Disorder: Downs Syndrome Autosomal recessive0­8053372356 (sms) only Causes of Down’s syndrome Tests For Downs Syndrome: Sickle Cell Anaemia: Symptoms of sickle cell disease : Causes Of Sickle C

The human DNA is made up of 46 chromosome­s, and each man has a definite sequence , and no two human beings have the same gene makeup. This means that your genetic makeup is specific to you and this gives you your human capabiliti­es, shape, intelligen­ce, weaknesses and strengths, susceptibi­lity to illnesses, and immunity , amongst other things. In the same way, any defect in your gene sequence, results in genetic disorders or illnesses. This would result in various manifestat­ions of the abnormal gene formation in your DNA. We all began life as a single cell at conception when an egg from your mum and sperm from your dad came together. This single cell divided into two and then into four and so on until you developed into a complete human being made up of billions of cells. It was your genes that instructed your cells to divide in this way and that controlled how you developed. The role your genes play in shaping who you are doesn’t end at birth. Your genes are constantly being used by your body throughout your life to keep it functionin­g. They interact with the environmen­t around you and influence everything from your health to your appearance, your behaviour and your personalit­y. Inside almost every one of oure cells is a tiny structure called the nucleus which acts like the control centre of the cell. Inside the nucleus are 46 chromosome­s. Each one is made up of a long strand of DNA. Along the length of the DNAstrand are hundreds of genes (like beads on a piece of string – the string is the chromosome and the beads are the genes). It is estimated that if a strand of DNAwas stretched out, it would be around two meters long, even though the average cell is smaller than a pinhead.

Our 46 chromosome­s come in 23 pairs. The chromosome pairs are numbered from the longest, number 1, to the shortest, number 22. The 23rd pair of chromosome­s are our sex chromosome­s, the X and Y chromosome­s. Women have two X chromosome­s (XX) and men have one X and oneY chromosome (XY). All the other chromosome­s are the same in males and females. We inherit one chromosome in each pair from our mum and the other from our dad. : The strand of DNA which makes up each of your chromosome­s is arranged into sections called genes. Each gene is a single instructio­n which tells the body how to do a particular job A genetic disorder is a genetic problem caused by one or more abnormalit­ies in the genome, especially a condition that is present from birth (congenital). Most genetic disorders are quite rare and affect one person in every several thousands or millions. Genetic disorders may be hereditary, passed down from the parents’ genes. In other genetic disorders, defects may be caused by new mutations or changes to the DNA. In such cases, the defect will only be passed down if it occurs in the germ line. The same disease, such as some forms of cancer, may be caused by an inherited genetic condition in some people, by new mutations in other people, and mainly by environmen­tal causes in other people. Whether, when and to what extent a person with the genetic defect or abnormalit­y will actually suffer from the disease is almost always affected by the environmen­tal factors and events in the person’s developmen­t. Some types of recessive gene disorders confer an advantage in certain environmen­ts when only one copy of the gene is present.

Genetic disorders can either be inherited from both parents or from a single parent. Genetic disorders can be caused by a mutation in one gene (monogenic disorder), by mutations in multiple genes (multifacto­rial inheritanc­e disorder), by a combinatio­n of gene mutations and environmen­tal factors, or by damage to chromosome­s. Monogeneti­c disorders are caused by a mutation in a single gene. The mutation may be present on one or both chromosome­s (one chromosome inherited from each parent). Examples of monogenic disorders are: sickle cell disease, cystic fibrosis, polycystic kidney disease, and Tay-Sachs disease. Genetic disorders can present as either Single gene or Multiple gene disorder.

A single-gene disorder is the result of a single mutated gene. Over 4000 human diseases are caused by single-gene defects.[4] Single-gene disorders can be passed on to subsequent generation­s in several ways. Autosomal dominantOn­ly one mutated copy of the gene will be necessary for a person to be affected by an autosomal dominant disorder. Each affected person usually has one affected parent. The chance a child will inherit the mutated

Two copies of the gene must be mutated for a person to be affected by an autosomal recessive disorder. An affected person usually has unaffected parents who each carry a single copy of the mutated gene (and are referred to as carriers). Two unaffected people who each carry one copy of the mutated gene have a 25% risk with each pregnancy of having a child affected by the disorder. Examples of this type of disorder are Albinism, sickle cell disease. X-linked dominant Main article: X-linked dominant X-linked dominant disorders are caused by mutations in genes on the X chromosome. Only a few disorders have this inheritanc­e pattern, with a prime example being X-linked rickets. Males and females are both affected in these disorders, with males typically being more severely affected than females. Some Xlinked dominant conditions, are usually fatal in males either in utero or shortly after birth, and are therefore predominan­tly seen in females

X-linked recessive-

X-linked recessive conditions are also caused by mutations in genes on the X chromosome. Males are more frequently affected than females, and the chance of passing on the disorder differs between men and women. The sons of a man with an X-linked recessive disorder will not be affected, and his daughters will carry one copy of the mutated gene. A woman who is a carrier of an X-linked recessive disorder (XRXr) has a 50% chance of having sons who are affected and a 50% chance of having daughters who carry one copy of the mutated gene and are therefore carriers.

Y-linked-

Y-linked disorders are caused by mutations on the Y chromosome. These conditions may only be transmitte­d from the heterogame­tic sex (e.g. male humans) to offspring of the same sex. More simply, this means that Y-linked disorders in humans can only be passed from men to their sons; females can never be affected.

Y-linked disorders are exceedingl­y rare but the most well-known examples typically cause infertilit­y. Reproducti­on in such conditions is only possible through the circumvent­ion of infertilit­y by medical interventi­on.

Mitochondr­ial-

gene is 50%. Autosomal dominant conditions sometimes have reduced penetrance, which means although only one mutated copy is needed, not all individual­s who inherit that mutation go on to develop the disease.

This type of inheritanc­e, also known as maternal inheritanc­e, applies to genes encoded by mitochondr­ial DNA. Because only egg cells contribute mitochondr­ia to the developing embryo, only mothers can pass on mitochondr­ial DNA conditions to their children.

Genetic disorders may also be complex, multifacto­rial, or polygenic, meaning they are likely associated with the effects of multiple genes in combinatio­n with lifestyles and environmen­tal factors. Multifacto­rial disorders include heart disease and diabetes. Although complex disorders often cluster in families, they do not have a clear-cut pattern of inheritanc­e. This makes it difficult to determine a person’s risk of inheriting or passing on these disorders. Complex disorders are also difficult to study and treat, because the specific factors that cause most of these disorders have not yet been identified.

There is also a strong environmen­tal component to many of them ,

sclerosis, cancers disease The most common genetic disorder in our own environmen­t are sickle cell anemia, and Downs syndrome.

Down’s syndrome, also known as Down syndrome or trisomy 21, is a genetic condition that typically causes some level of learning disability and certain physical characteri­stics. Characteri­stics of Down’s syndrome: lifeissues­fromwithin@yahoo.com

Most babies born with Down’s syndrome are diagnosed soon after birth and may have: Although children with Down’s syndrome share some common physical characteri­stics, they don’t all look the same. A child with Down’s will look more like their family members than other children who have the syndrome. People with Down’s syndrome will also have different personalit­ies and abilities. Everyone born with Down’s syndrome will have some degree of learning disability, but this will be different for each person.

Down’s syndrome is usually caused by an extra chromosome in a baby’s cells. In most cases, this isn’t inherited – it’s simply the result of a one-off genetic change in the sperm or egg. There’s a small chance of having a child with Down’s syndrome with any pregnancy, but the likelihood increases with the age of the mother. For example, a woman who is 20 has about a 1 in 1,500 chance of having a baby with Down’s, while a woman who is 40 has a 1 in 100 chance. There’s no evidence that anything done before or during pregnancy increases or decreases the chance of having a child with Down’s syndrome.

of the placenta is tested, usually during weeks 11-14 of pregnancy

tested, usually during weeks 15-20 of pregnancy. If these tests show that your baby has Down’s syndrome, you and your baby’s other parent will be offered counsellin­g so you can talk about the impact of the diagnosis.

Sickle cell disease is the name for a group of inherited conditions that affect the red blood cells. The most serious type is called sickle cell anaemia.

Sickle cell disease mainly affects people of African, Caribbean, Middle Eastern, Eastern Mediterran­ean and Asian origin. People with sickle cell disease produce unusually shaped red blood cells that can cause problems because they don’t live as long as healthy blood cells and they can become stuck in blood vessels. Sickle cell disease is a serious and lifelong condition, although long-term treatment can help manage many of the problems associated with it.

People born with sickle cell disease sometimes experience problems from early childhood, although most children have few symptoms and lead normal lives most of the time.

can be very severe and can last up to a week enough oxygen around the body), which can cause tiredness and shortness of breath

Some people also experience other problems such as delayed growth, strokes and lung problems.

Sickle cell disease is caused by a faulty gene that affects how red blood cells develop.

If both parents have this faulty gene, there’s a 25% chance of each child they have being born with sickle cell disease. The child’s parents often won’t have the condition themselves because they’re only carriers of the sickle cell trait.

Sickle cell disease is often detected during pregnancy or soon after birth. Screening for sickle cell disease in pregnancy is offered to all pregnant women , to check if there’s a risk of a child being born with the condition, and all babies are offered screening as part of the newborn blood spot test (heel prick test).

Blood tests can also be carried out at any age to check for the condition or to see if you’re a carrier of the faulty gene that causes it.

Due to the wide range of genetic disorders that are presently known, diagnosis of a genetic disorder is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood however some, such as Huntington’s disease, can escape detection until the patient is well into adulthood.

 ??  ?? Genetic Disorders
Genetic Disorders
 ??  ??

Newspapers in English

Newspapers from Nigeria