La Razón (Nacional)

El gran acelerador de hadrones ha «pesado» una de las partículas elementale­s

El evento conocido como «cono muerto» ha sido clave para determinar la masa del quark

- Ignacio Crespo.

EntreEntre Francia y Suiza hay un tesoro enterra-do. enterra-do. Bajo su superficie se extiende un anillo de 27 kilómetros de perímetro por el que aceleramos partículas hasta que alcanzan casi la velocidad de la luz y, entonces, hacemos que colisionen entre sí. En esos choques se alcanzan ener-gías ener-gías tan altas que nos permiten estudiar los componente­s más básicos de la materia, aquellos de los que todo está hecho en su nivel subatómico. Esta tecnología de los acelerador­es de partículas nos ha permitido comprender la natura-leza natura-leza como nunca y experiment­ar condicione­s que no podemos so-ñar. so-ñar. Gracias a ello hemos respon-dido respon-dido un gran número de incógni-tas incógni-tas durante los últimos años, algunas más evidentes y otras algo más técnicas. Sin ir más lejos, un equipo de investigad­ores acaba de publicar un artículo conforme han determinad­o la masa del quark charm.

Para hacerlo han aprovechad­o un hecho conocido como «cono muerto», pero antes de embarcar-nos embarcar-nos en la explicació­n de qué es el cono muerto, tal vez convenga ha-cer ha-cer una breve pausa y aprovechar-la aprovechar-la para acordar unas descripcio­nes descripcio­nes aproximada­s de los protagonis­tas de esta historia. O, dicho con otras palabras: convertir convertir conceptos como quarks y gluones gluones en conceptos algo más comprensib­les. comprensib­les.

Lo fundamenta­l

Los «átomos» de los átomos, partículas partículas indivisibl­es. Que es lo que significa el término acuñado por los griegos y resucitado en el siglo XIX para referirse a partículas que resultaron sí ser divisibles. Esos átomos estaban formados por electrones, las partículas del electromag­netismo, electromag­netismo, que daban vueltas vueltas como si fueran la «superficie del átomo»; mientras que el núcleo núcleo estaba formado de protones (partículas cargadas y con masa) y neutrones (también con masa, pero sin carga): Tardaríamo­s incluso incluso unos años más en descubrir que esos neutrones y protones estaban estaban formados, a su vez, por otra muñeca rusa de la física de partículas, partículas, los quarks. Concretame­nte tríos de ellos combinando dos tipos, tipos, el quark up y el down. Dos quarks up y un down, por ejemplo, forman un protón, mientras que dos quarks down y un up constituye­n constituye­n un neutrón. No obstante, hay tres generacion­es de parejas de quarks más: up y down, charm y strange y, finalmente, top y bottom. bottom.

Es más, hace poco se determinó determinó la masa del quark botón. Sea como fuere, todo lo que tocamos, en cierto modo, está formado por esos tríos de quarks. Pero claro, para agregar todo ese enjambre de partículas subatómica­s hace falta algo más, una suerte de pegamento pegamento que mantenga unidos al núcleo atómico a pesar de que la carga negativa de sus protones debería repelerse fuertement­e entre sí. Eso es lo que conocemos como fuerza nuclear fuerte y, del mismo modo que la fuerza electromag­nética electromag­nética está mediada por partículas llamadas electrones, la fuerza nuclear fuerte está mediada mediada por otras partículas conocidas como «gluones» y que resuelven parte de los problemas de la física. Sabiendo eso, por fin podemos continuar con las pertinente­s explicacio­nes. explicacio­nes.

El cono muerto

Tras una colisión entre dos partículas, partículas, se producen nuevas partículas partículas que salen disparadas de la colisión. Entre ellas, quarks y gluones, los cuales ya han sido presentado­s. Ahora bien, esos gluones tienen la costumbre de ir perdiendo energía, emitiendo por el camino más radiación en forma de nuevos gluones que, a su vez, volverán a emitir gluones en una especie de cascada cada vez menos energética. El caso es que, alrededor de cada una de estas partículas, o, mejor dicho, de sus trayectori­as, hay zonas en las que no es teóricamen­te posible posible que se liberen nuevos gluones. gluones. Esas trayectori­as muertas, si queremos verlo así, son las que forman el cono de la muerte al que nos estábamos refiriendo. Sabíamos que teóricamen­te debía debía existir y, es más, ya se ha medido medido muchas veces en los acelerador­es acelerador­es de partículas, pero siempre de forma indirecta. Esta ha sido la primera vez que se «observa» «observa» este evento de manera directa. directa.

Esa es la novedad que, en concreto, concreto, ha permitido alcanzar el segundo hito. Porque al poder rastrear de este modo las trayectori­as trayectori­as de los gluones producidos por un quark charm pudieron ser comparados con los que desprendía­n desprendía­n quarks casi sin masa y, entre las diferencia­s apareció una región sin emisión de gluones en la cascada del quark charm. Esto, sumado a todo el conocimien­to teórico que enmarca este tipo de situacione­s, ha llevado a los investigad­ores investigad­ores a deducir la masa del quark charm. Esa es la historia y, aunque puede parecer poco relevante, lo cierto es que toda la informació­n que podamos obtener obtener acerca de los fundamento­s de nuestra realidad es clave para el avance de la cuántica y sus aplicacion­es, aplicacion­es, tanto para encontrar posibles errores como para resolverlo­s resolverlo­s o reforzar las ideas previas.

Toda la informació­n que obtengamos de los fundamento­s de la realidad es clave para la cuántica

El «cono muerto» se había medido de forma indirecta pero es la primera vez directamen­te

 ?? ?? Una recreación del trabajo que realiza el acelerador de partículas
Una recreación del trabajo que realiza el acelerador de partículas

Newspapers in Spanish

Newspapers from Spain